期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
1
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/cfs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
在线阅读 下载PDF
High-efficiently doping nitrogen in kapok fiber-derived hard carbon used as anode materials for boosting rate performance of sodium-ion batteries 被引量:1
2
作者 Tianyun Zhang Tian Zhang +1 位作者 Fujuan Wang Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期472-482,共11页
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan... The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis. 展开更多
关键词 Kapok fiber Hard carbon electrode materials Rate performance Sodium-ion batteries
在线阅读 下载PDF
Oxidation Modification of Polyacrylonitrile-Based Carbon Fiber and Its Electro-Chemical Performance as Marine Electrode for Electric Field Test 被引量:10
3
作者 ZAI Xuerong LIU Ang +2 位作者 TIAN Yuhua CHAI Fanggang FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期361-368,共8页
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz... A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect. 展开更多
关键词 carbon fiber electrode electro-chemical oxidation modification electro-chemical performance electric field response electric field test
在线阅读 下载PDF
Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes 被引量:7
4
作者 Hao Yang Tuzhi Xiong +4 位作者 Zhixiao Zhu Ran Xiao Xincheng Yao Yongchao Huang M.-Sadeeq Balogun 《Carbon Energy》 SCIE CAS 2022年第5期820-832,共13页
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe... Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs. 展开更多
关键词 density functional theory flexible carbon fiber cloth lithium-ion batteries Ni5P4 self-supportive electrodes
在线阅读 下载PDF
The Study of Electrochemical Behavior of Dopamine at Nano-gold Modified Carbon Fiber Electrode 被引量:1
5
作者 HongZHANG BaoKangJIN XiaoYanJIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第7期737-739,共3页
The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion... The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion and adsorption simultaneously at nano-gold (NG) modified carbon fiber electrode (CFE). This modified electrode can separate the peak potentials of dopamine and ascorbic acid (AA). The peak current of DA in DPV curve was found to be linearly proportional to the concentration of DA at range of 2.0?0-6~1.5?0-5mol/L and 1.0?0-5~5.0?0-4mol/L, respectively. 展开更多
关键词 NANO-GOLD carbon fiber electrode dopamine.
在线阅读 下载PDF
Examining the Effects of Common Laboratory Methods on the Sensitivity of Carbon Fiber Electrodes in Amperometric Recordings of Dopamine 被引量:1
6
作者 William T. Prater Malli Swamy +1 位作者 Megan D. Beane Deranda B. Lester 《Journal of Behavioral and Brain Science》 2018年第3期117-125,共9页
Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experi... Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experimental groups consisted of CFEs at different ages (1 week, 1 month, or 2 months), cleaned in solvents (isopropanol or xylene), and exposed to in vitro use (flow cell calibrations) or in vivo use (in brain tissue). In order to determine if any of these factors affect CFE sensitivity, the present study utilized fixed potential amperometry and a flow injection system to calibrate CFEs for the measurement of dopamine. The sensitivity index (nA/μM per 100 μm of exposed carbon fiber) was not affected by the age of CFEs or pre-cleaning with xylene or isopropanol. CFE sensitivity of the in vitro exposure group also did not differ from untreated CFEs, indicating the calibration process did not alter sensitivity. However, in vivo use in brain tissue did reduce sensitivity. This effect was negated and sensitivity restored by cleaning CFEs in isopropanol or xylene following in vivo brain recordings. Given that variations in CFE sensitivity can skew results, our findings can help standardize CFE use and explain discrepancies between researchers. 展开更多
关键词 Fixed Potential AMPEROMETRY carbon fiber electrode DOPAMINE Flow Injection System electrode Calibration
在线阅读 下载PDF
A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air
7
作者 刘文正 赵帅 +1 位作者 柴茂林 牛江奇 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期104-107,共4页
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme... During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation. 展开更多
关键词 A Method of Using a carbon fiber Spiral-Contact electrode to Achieve Atmospheric Pressure Glow Discharge in Air
在线阅读 下载PDF
All-carbon positive electrodes for stable aluminium batteries 被引量:5
8
作者 Zhili Zhou Na Li +4 位作者 Peng Wang Wei-Li Song Shuqiang Jiao Haosen Chen Daining Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期17-26,共10页
For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)... For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries. 展开更多
关键词 carbon fiber GRAPHITE Current collectors All-carbon electrode Al BATTERIES
在线阅读 下载PDF
Integrated Co3O4/carbon fiber paper for high-performance anode of dual-ion battery 被引量:4
9
作者 Lu Sui Xiaoyuan Shi +5 位作者 Ting Deng He Yang Hongyan Liu Hong Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期7-12,共6页
In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expa... In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expansion and exfoliation always occur for electrode materials. Herein, an integrated electrode Co3O4/carbon fiber paper (CFP) is prepared as the anode of DIB. As the Co3O4 nanosheets grow on CFP substrate vertically, it promotes the immersion of electrolyte and shortens the pathway for ionic transport. Besides, the strong interaction between Co3O4 and CFP substrate reduces the possibility of sheet exfoliation. An integrated-electrode-based DIB is therefore packaged using Co3O4/CFP as anode and graphite as cathode. As a result, a high energy density of 72 Wh/kg is achieved at a power density of 150 W/kg. The design of integrated electrode provides a new route for the development of high-performance DIBs. 展开更多
关键词 INTEGRATED electrode Dual-ion batteries CO3O4 ANODE carbon fiber paper
在线阅读 下载PDF
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
10
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite cf/Al composite COATING WETTABILITY mechanical properties
在线阅读 下载PDF
DNA Nano-netting Intertexture on Carbon Electrodes 被引量:2
11
作者 XiangQinLIN XiaoHuaJIANG LiPingLU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期997-1000,共4页
Native calf thymus double stranded DNA (ct-dsDNA) is successfully immobilized from solution onto carbon substrates by covalent linkages under an optimized deposition potential of 1 .8±0.3 V vs. 50 mmol/L NaCl-Ag/... Native calf thymus double stranded DNA (ct-dsDNA) is successfully immobilized from solution onto carbon substrates by covalent linkages under an optimized deposition potential of 1 .8±0.3 V vs. 50 mmol/L NaCl-Ag/AgCl. The long chain DNA fabricates a layer of well conductive nano-netting intertexture, which is stable in pH 14 alkaline solution and in boiling water. The ct-dsDNA modified carbon fiber disk electrode shows two to three orders of magnitude enlarged electrode effective surface area and similarly enlarged voltammetric responses to Co(phen)33+ and dopamine. Thermal dissociated single stranded ct-DNA can also lead to similar result. This modified electrode will find wide applications in the fields of DNA-based electrochemical biosensors. 展开更多
关键词 Calf thymus DNA iramobilization carbon fiber electrode electrochemical biosensor.
在线阅读 下载PDF
Boosting Capacitive Deionization Performance of Commercial Carbon Fibers Cloth via Structural Regulation Based on Catalytic-Etching Effect 被引量:3
12
作者 Chunjie Zhang Dong Wang +5 位作者 Zhen Wang Guangshuai Zhang Zhichao Liu Jie Wu Jin Hu Guangwu Wen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期242-252,共11页
Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconduct... Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization. 展开更多
关键词 capacitive deionization carbon fibers cloth catalytic-etching monolithic electrodes
在线阅读 下载PDF
Electroless nickel plating on the surface of carbon fibers 被引量:4
13
作者 刘延坤 冯玉杰 田言 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第5期601-607,共7页
The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the comp... The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the composites.The relationship between the performance of depositing coat and pH value,temperature,reaction time and the way of agitation was studied.Results show that the depositing quality is stable under pH between 4.5 and 5.0,temperature between 75 ℃ and 85 ℃,reaction time for 10 min and air agitation.The uniform and compact nickel layer deposited on carbon fibers was proved by XRD and SEM,and the electrical resistivity of carbon fibers with nickel coating was tested.Results indicate that the electrical resistivity of carbon fibers with electroless nickel plating is decreased by an order of magnitude compared with that of carbon fibers.It means that nickel coating can greatly improve the electromagnetic interference shielding properties of carbon fibers. 展开更多
关键词 carbon fiber cf electroless nickel plating electrical resistivity
在线阅读 下载PDF
自成核行为在CF/PPS复合材料中的差异性与普适性
14
作者 任毅 李洲洋 +3 位作者 李心果 周剑锋 朱姝 余木火 《合成纤维》 CAS 2024年第4期65-74,共10页
以半结晶高分子为基体的碳纤维增强热塑性复合材料,其基体的结晶行为将受到碳纤维表面性质与热历史的共同影响。当这种材料在经历反复加热冷却的热循环过程时,基体会产生自成核行为,其结晶过程变得更加复杂。通过三种T300级碳纤维分别... 以半结晶高分子为基体的碳纤维增强热塑性复合材料,其基体的结晶行为将受到碳纤维表面性质与热历史的共同影响。当这种材料在经历反复加热冷却的热循环过程时,基体会产生自成核行为,其结晶过程变得更加复杂。通过三种T300级碳纤维分别制备了碳纤维增强聚苯硫醚(CF/PPS)复合材料,并探究了二次熔融温度与CF/PPS复合材料结晶行为的关系,揭示了不同碳纤维表面性质对CF/PPS复合材料自成核行为的影响。在此基础上阐明了CF/PPS复合材料基体自成核与CF异相成核的竞争关系。最后,通过冲压成型制得具有自成核行为的CF/PPS复合材料角片,验证了自成核对于CF/PPS复合材料二次热成型技术的有效性与重要性。 展开更多
关键词 cf/PPS复合材料 自成核行为 碳纤维 冲压成型
在线阅读 下载PDF
不同碳纤维表面状态对Cf/SiC复合材料性能的影响 被引量:4
15
作者 王建方 陈朝辉 +2 位作者 刘维民 齐尚奎 谢征芳 《材料导报》 EI CAS CSCD 2002年第3期67-69,共3页
采用XPS对两种不同的碳纤维表面进行了分析,制备了束丝Cf/SiC复合材料,并采用束丝拉仲强度表征其性能。结果表明,碳纤维表面主要有C、O两种元素存在,其中碳主要有C-C和C-O两种存在方式,并且两种纤维的Ols/Cls有明显的不同。当氧含量高时... 采用XPS对两种不同的碳纤维表面进行了分析,制备了束丝Cf/SiC复合材料,并采用束丝拉仲强度表征其性能。结果表明,碳纤维表面主要有C、O两种元素存在,其中碳主要有C-C和C-O两种存在方式,并且两种纤维的Ols/Cls有明显的不同。当氧含量高时,纤维在经历高温处理后强度下降幅度较大,所制备的Cf/SiC复合材料性能较差。 展开更多
关键词 碳纤维 表面状态 XPS cf/SIC复合材料 碳纤维 碳化硅 性能
在线阅读 下载PDF
碳纤维/聚醚醚酮(CF/PEEK)复合材料摩擦磨损性能及抗摩擦静电特性研究 被引量:8
16
作者 逄显娟 岳世伟 +6 位作者 黄素玲 谢金梦 王帅 宋晨飞 岳赟 刘建 李栋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第3期277-286,共10页
利用真空热压烧结技术制备了不同碳纤含量的碳纤维/聚醚醚酮(CF/PEEK)复合材料,采用热导率分析仪和热重测试仪对材料的热学性能进行表征,并利用多功能摩擦磨损试验机、三维形貌轮廓仪、扫描电子显微镜和摩擦静电计对材料的摩擦磨损性能... 利用真空热压烧结技术制备了不同碳纤含量的碳纤维/聚醚醚酮(CF/PEEK)复合材料,采用热导率分析仪和热重测试仪对材料的热学性能进行表征,并利用多功能摩擦磨损试验机、三维形貌轮廓仪、扫描电子显微镜和摩擦静电计对材料的摩擦磨损性能和抗摩擦静电性能进行分析。分析结果表明:随着CF添加量的增加,复合材料摩擦因数、磨损率和摩擦静电电压先降低后升高,当CF添加量(质量分数)为20%时,摩擦因数、磨损率和摩擦静电电压达到最低,分别为0.247、5.6×10^(-6)mm/(N·m)和3.3 V,证明此种方法制备的20%CF/PEEK材料具有优异的摩擦磨损性能和抗静电性能。CF/PEEK复合材料磨损机理以黏着磨损为主,并且伴随着轻微的磨粒磨损。 展开更多
关键词 聚醚醚酮 碳纤维 复合材料 摩擦磨损 抗摩擦静电
在线阅读 下载PDF
炭纤维表面官能团异氰酸酯化及阴离子接枝尼龙6研究——(Ⅳ)接枝对CF/PA6复合材料界面形态的影响 被引量:3
17
作者 林志勇 陈婉吟 +2 位作者 肖凤英 钱浩 曾汉民 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2004年第3期95-98,共4页
利用偏光显微镜(PLM)研究了炭纤维(CF)表面异氰酸酯化及其阴离子接技尼龙6(PA6)对CF/PA6复合材料界面形态的影响,考察了纤维表面化学性质、结晶温度对CF/PA6复合材料界面形成横晶的影响。结果表明,在低于初始结晶温度至接近熔点范围内,... 利用偏光显微镜(PLM)研究了炭纤维(CF)表面异氰酸酯化及其阴离子接技尼龙6(PA6)对CF/PA6复合材料界面形态的影响,考察了纤维表面化学性质、结晶温度对CF/PA6复合材料界面形成横晶的影响。结果表明,在低于初始结晶温度至接近熔点范围内,PA6在未接枝与接枝CF表面均可以形成横晶,结晶温度低形成的横晶不致密、不完整,纤维诱发横晶的能力小,结晶温度高形成的横晶完整而致密,纤维诱发横晶的能力大。在相对较低的结晶温度下,接枝CF比未接枝CF具有较高的诱发横晶能力,同时诱发的横晶致密度高且完整性好。 展开更多
关键词 PA6 炭纤维 cf 异氰酸酯化 尼龙6 阴离子接枝反应 横晶 温度
在线阅读 下载PDF
PIP法制备Cf/SiC复合材料过程中碳纤维的化学损伤 被引量:3
18
作者 王建方 吴文健 +2 位作者 胡碧茹 满亚辉 陈朝辉 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2006年第10期1982-1985,共4页
对先驱体聚碳硅烷浸渍裂解工艺(PIP)制备Cf/SiC复合材料过程中碳纤维损伤严重的问题,系统地分析了在Cf/SiC复合材料制备过程中先驱体裂解对碳纤维的化学损伤.研究结果表明,PIP工艺中碳纤维的化学损伤包括界面反应和基体向碳纤维内部的... 对先驱体聚碳硅烷浸渍裂解工艺(PIP)制备Cf/SiC复合材料过程中碳纤维损伤严重的问题,系统地分析了在Cf/SiC复合材料制备过程中先驱体裂解对碳纤维的化学损伤.研究结果表明,PIP工艺中碳纤维的化学损伤包括界面反应和基体向碳纤维内部的扩散反应.其中聚碳硅烷(PCS)中的活性基团和碳纤维的化学反应并不严重,而微量的氧气和杂质对碳纤维的化学损伤影响很大;基体中硅等元素可向碳纤维内部扩散,随着高温处理时间的延长而加深,并形成脆性的界面层,使碳纤维截面积减小.在第一周期浸渍裂解过程中,先驱体对碳纤维的化学损伤很少,在后续周期中,随着基体致密度的提高,碳纤维的化学损伤有所增加. 展开更多
关键词 cf/SIC复合材料 碳纤维 化学损伤
在线阅读 下载PDF
成对ACF电极电解脱色偶氮染料苋菜红 被引量:8
19
作者 杨卫身 毕会锋 周艳伟 《高校化学工程学报》 EI CAS CSCD 北大核心 2008年第1期157-161,共5页
研究了偶氮染料苋菜红在成对ACF(活性炭纤维)电极上的电解脱色和发生成对电解脱色的电流密度。在恒电流模式下,采用无隔膜电解槽,同时以活性炭纤维(ACF)为阳极和阴极,考察了不同电流密度下的脱色效果和脱色机制。结果表明:(1)... 研究了偶氮染料苋菜红在成对ACF(活性炭纤维)电极上的电解脱色和发生成对电解脱色的电流密度。在恒电流模式下,采用无隔膜电解槽,同时以活性炭纤维(ACF)为阳极和阴极,考察了不同电流密度下的脱色效果和脱色机制。结果表明:(1)0~0.2mA·cm^-2时,脱色是由于染料在ACF上的吸附,极化对吸附行为影响不大,脱色率在15%以下:(2)0.3~0.4mA·cm^-2时,阴极电位达到该染料在ACF上的还原电位(-04V),阳极电位未达到其氧化电位(0.6V),脱色是由于阴极电还原和阳极吸附,脱色率最高可达44%;(3)0.5~1.0mA.cm^-2时,发生成对电解,即阳极电氧化和阴极电还原同时使染料脱色,当染料初始浓度为250mg·L^-1,电解6h,脱色率最高可达84%。 展开更多
关键词 成对电解 活性炭纤维电极 偶氮染料 脱色
在线阅读 下载PDF
CNT含量对CNT/PAN柔性电极的微观形貌及性能影响
20
作者 杨定力 李新梅 +2 位作者 王晓辉 李航 张泽疆 《化工新型材料》 北大核心 2025年第3期122-125,131,共5页
以聚丙烯腈(PAN)和碳纳米管(CNT)为原料,通过静电纺丝制备CNT/PAN纳米纤维膜作为柔性超级电容器电极材料。通过添加不同含量(1%、2%、3%、4%)的CNT,对比电极材料的纤维直径分布范围和CV、GCD、EIS曲线。结果发现,当CNT的添加量为2%时,... 以聚丙烯腈(PAN)和碳纳米管(CNT)为原料,通过静电纺丝制备CNT/PAN纳米纤维膜作为柔性超级电容器电极材料。通过添加不同含量(1%、2%、3%、4%)的CNT,对比电极材料的纤维直径分布范围和CV、GCD、EIS曲线。结果发现,当CNT的添加量为2%时,纤维平均直径最小,为78.67nm。该电极在0.1mA/cm^(2)的充放电电流密度下,样品的放电时间为5.75s,放电比电容达到1.150mF/cm^(2)。 展开更多
关键词 碳纳米管 柔性 纤维 电极 电化学
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部