期刊文献+
共找到18,918篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of Auxiliary Magnetorheological Brake on Vehicles
1
作者 Quang Tuan Hoang Minh Hoang Trinh Thanh-Tung Nguyen 《Journal of Transportation Technologies》 2025年第1期122-134,共13页
In ground vehicles, the brake is an essential system to ensure the safety of movement. Multiple braking mechanisms have been introduced for use in vehicles. This study explores the potential of using magneto-rheologic... In ground vehicles, the brake is an essential system to ensure the safety of movement. Multiple braking mechanisms have been introduced for use in vehicles. This study explores the potential of using magneto-rheological fluid (MRF) brakes in automotive applications. MRF brakes offer controllable braking force due to a magnetic field, but their use is limited by simulation challenges. In this study, a 7-tooth MRF brake model is proposed. The brake model is simulated in Altair Flux software to analyze magnetic field distribution, braking torque, and its variation under different currents and disc speeds. The simulation conditions also consider both viscous and electromagnetic torque components. Then, the results are analyzed across different brake regions, including rotor, stator, and fluid gap. These results provide valuable insights for designing, manufacturing, installing, and testing MRF brakes for automotive use. 展开更多
关键词 Magnetorheological Fluid (MRF) Magnetorheological Brake (MRB) SIMULATION Automotive Applications Altair Flux Software
在线阅读 下载PDF
Research and Application of EMUs Braking System Control Logic Based on MBSE
2
作者 Wen-yu Wang Yong-qiang Wang Yue Lin 《Journal of Electronic Research and Application》 2025年第1期314-321,共8页
As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using a... As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using an MBSE practice framework.The framework mainly includes the requirement analysis phase,functional analysis phase,and design phase.Systems Modeling Language(SysML)was used as the modeling language,and Cameo Systems Modeler(CSM)was employed as the modeling tool.By integrating the EMU braking system control logic and utilizing a top-down design approach,the implementation of MBSE in the bullet train braking system was analyzed and studied.The results show that,according to the MBSE practice framework,a unified description of the requirement analysis,functional analysis,and design synthesis of the EMU braking system control logic can be achieved.Additionally,the correlation and traceability between models can be established. 展开更多
关键词 MBSE braking system Control logic SYSML
在线阅读 下载PDF
Research on optimization and evaluation method of heavy-haul train cyclic braking manipulation
3
作者 Wen He Chongyi Chang +1 位作者 Lan Li Yupan Song 《Railway Sciences》 2025年第2期231-248,共18页
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a... Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains. 展开更多
关键词 Heavy-haul trains Longitudinal train dynamics Cyclic brake Manipulation optimization Detailed manipulation evaluation
在线阅读 下载PDF
Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling 被引量:13
4
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2783-2791,共9页
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur... The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well. 展开更多
关键词 finite element method brake disk co-continuous SiC/6061 composite thermal analysis airflow cool
在线阅读 下载PDF
Distribution and Dissipation of Braking Power of Wet Multidisc Brake 被引量:1
5
作者 阎清东 宿新东 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期87-93,共7页
To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was pu... To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials. 展开更多
关键词 wet multidisc brake braking power finite element(FE) analysis
在线阅读 下载PDF
Electronic Brake-Force Distribution Control Methods of ABS-Equipped Vehicles During Cornering Braking 被引量:5
6
作者 王国业 刘昭度 +1 位作者 马岳峰 齐志权 《Journal of Beijing Institute of Technology》 EI CAS 2007年第1期34-37,共4页
Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to th... Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control. 展开更多
关键词 electronic brake-force distribution(EBD) cornering braking control methods
在线阅读 下载PDF
Development of a Drilling and Coring Test-bed for Lunar Subsurface Exploration and Preliminary Experiments 被引量:11
7
作者 SHI Xiaomeng DENG Zongquan +3 位作者 QUAN Qiquan TANG Dewei HOU Xuyan JIANG Shengyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期673-682,共10页
Drill sampling has been widely employed as an effective way to acquire deep samples in extraterrestrial exploration. A novel sampling method, namely, flexible-tube coring, was adopted for the Chang'e mission to acqui... Drill sampling has been widely employed as an effective way to acquire deep samples in extraterrestrial exploration. A novel sampling method, namely, flexible-tube coring, was adopted for the Chang'e mission to acquire drilling cores without damaging stratification information. Since the extraterrestrial environment is uncertain and different from the terrestrial environment, automated drill sampling missions are at risk of failure. The principles of drilling and coring for the lunar subsurface should be fully tested and verified on earth before launch. This paper proposes a test-bed for conducting the aforementioned experiments on earth. The test-bed comprises a rotary-percussive drilling mechanism, penetrating mechanism, drilling medium container, and signal acquisition and control system. For granular soil, coring experiments indicate that the sampling method has a high coring rate greater than 80%. For hard rock, drilling experiments indicate that the percussive frequency greatly affects the drilling efficiency. A multi-layered simulant composed of granular soil and hard rock is built to test the adaptability of drilling and coring. To tackle complex drilling media, an intelligent drilling strategy based on online recognition is proposed to improve the adaptability of the sampling drill. The primary features of this research are the proposal of a scheme for drilling and coring a test-bed for validation on earth and the execution of drilling experiments in complex media. 展开更多
关键词 drilling and coring device test-bed lunar soil sampling
在线阅读 下载PDF
A numerical method for the simulation of freight train emergency braking operations based on the UIC braked weight percentage 被引量:1
8
作者 N.Bosso Matteo Magelli N.Zampieri 《Railway Engineering Science》 2023年第2期162-171,共10页
The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamic... The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamics(LTD) code LTDPoliTo, which was originally unable to account for air brake forces. The proposed model uses an empirical exponential function to calculate the air brake forces during the simulation, while the maximum normal force on the brake friction elements is calculated according to the indication of the vehicle braked weight percentage.Hence, the model does not require to simulate in detail the fluid dynamics in the brake pipe nor to precisely know the main parameters of the braking system mounted on each vehicle. The model parameters are tuned to minimize the difference between the braking distance computed by the LTDPoliTo code and the value prescribed by the UIC544-1 leaflet in emergency braking operations. Simulations are run for different configurations of freight train compositions including a variable number of Shimmns wagons trailed by an E402B locomotive at the head of the train, as suggested in a reference literature paper. The results of the proposed method are in good agreement with the target braking distances calculated according to the international rules. 展开更多
关键词 Railway brake modelling Emergency braking UIC braking system Braked weight Longitudinal train dynamics
在线阅读 下载PDF
Design and Test of the Semi-Automatic Test-Bed with Inclined Belt of Garlic Transplanting Machine 被引量:2
9
作者 Zhaolei Zhang Aijun Geng +2 位作者 Jianning Yang Ruxin Li Jialin Hou 《American Journal of Plant Sciences》 2015年第19期3298-3305,共8页
In order to verify the feasibility of semi-automatic garlic planter with inclined belt program and determine its reasonable operating parameters, the semi-automatic test-bed with inclined belt of garlic transplanting ... In order to verify the feasibility of semi-automatic garlic planter with inclined belt program and determine its reasonable operating parameters, the semi-automatic test-bed with inclined belt of garlic transplanting machine was designed, and the garlic box experiments were conducted. The angle of inclined belt on the test-bed and its running speed were adjustable. Single factor test results showed that the program of the semi-automatic garlic planter with inclined belt was feasible, and the angle of inclined belt and the test bed running speed affected the indicators. Orthogonal experiment results showed that the angle of inclined belt was the main factor affecting the test indicators. It is also found that the best angle was 30 degrees, while the most reasonable running speed was 0.75 Km/h. 展开更多
关键词 GARLIC PLANTER Inclined BELT test-bed
在线阅读 下载PDF
Simplified Removable Ground Test-Bed for Testing Turbofan Engine
10
作者 李文峰 王永生 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第3期138-141,共4页
A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wh... A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper. 展开更多
关键词 turbofan engine simplified type REMOVABLE test-bed ground test facilities
在线阅读 下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview 被引量:1
11
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad BIOCOMPOSITES green composite mechanical properties natural reinforcement WASTE
在线阅读 下载PDF
Thermomechanical Behavior of Brake Drums Under Extreme Braking Conditions
12
作者 T.Khatir M.Bouchetara +3 位作者 K.Derrar M.Djafri S.Khatir M.Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2022年第8期2259-2273,共15页
Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the... Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the kinetic energy by transforming it into heat energy.A too high temperature can lead to an almost total loss of braking efficiency.An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface.Heat transfer and temperature gradient,not to forget the vehicle’s travel environment(high speed,heavy load,and steeply sloping road conditions),must thus be the essential criteria for any brake system design.The aim of the present investigation is to analyze the thermal behavior of different brake drum designs during the single emergency braking of a heavy-duty vehicle on a steeply sloping road.The calculation of the temperature field is performed in transient mode using a three-dimensional finite element model assuming a constant coefficient of friction.In this study,the influence of geometrical brake drum configurations on the thermal behavior of brake drums with two different materials in grey cast iron FG200 and aluminum alloy 356.0 reinforced with silicon carbide(SiC)particles is analyzed under extreme vehicle braking conditions.The numerical simulation results obtained using FE software ANSYS are qualitatively compared with the results already published in the literature. 展开更多
关键词 Drum brake finite element method braking energy distribution friction heat power friction heat flux transient temperature field
在线阅读 下载PDF
Blended Regenerative Anti-Lock Braking System and Electronic Wedge Brake Coordinate Control Ensuring Maximal Energy Recovery and Stability of All-Wheel-Motor-Drive Electric Vehicles
13
作者 Mahmoud Said Jneid Péter Harth 《Journal of Transportation Technologies》 2023年第3期465-495,共31页
ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their grea... ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging. 展开更多
关键词 EV Stability Regenerative-ABS Blended braking Energy Recovery In-Wheel-Motor Electronic-Wedge-Brake Brake-by-Wire
在线阅读 下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles 被引量:1
14
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
在线阅读 下载PDF
Sepiolite:A new component suitable for 380 km/h high-speed rail brake pads 被引量:2
15
作者 Jiaqi Wu Zhuan Li +4 位作者 Guoyuan Wen Zonglong Gao Ye Li Yang Li Peng Xiao 《Advanced Powder Materials》 2024年第4期36-46,共11页
To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabric... To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature. 展开更多
关键词 Lubrication-wear Sepiolite-graphite High-speed rail brake pads MECHANISMS Friction layer Prediction of temperature
在线阅读 下载PDF
Copper-Free Resin-Based Braking Materials:A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
16
作者 Kaikui Zheng Youxi Lin +2 位作者 Shanmin You Zhiying Ren Jianmeng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期401-412,共12页
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with... Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs. 展开更多
关键词 Fly-ash cenospheres braking materials Friction and wear Heat-fade resistance Wear form
在线阅读 下载PDF
Thermal fatigue and wear of compacted graphite iron brake discs with various thermomechanical properties
17
作者 Gui-quan Wang Zhuo Xu +2 位作者 Zhong-li Liu Xiang Chen Yan-xiang Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期248-256,共9页
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat... The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear. 展开更多
关键词 compacted graphite iron brake disc thermomechanical properties thermal fatigue WEAR
在线阅读 下载PDF
Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs
18
作者 Nan Liu Chen Hong +4 位作者 Xinchao Su Xing Jin Chen Jiang Yuqi Shi Bingkun Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1867-1882,共16页
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia... As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case. 展开更多
关键词 Axle-mounted train brake disc aerodynamic torque wind tunnel test numerical simulation
在线阅读 下载PDF
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
19
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration braking impact factor
在线阅读 下载PDF
Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management
20
作者 Feng Zhao Xiaotong Zhu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第9期2585-2601,共17页
In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strat... In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost. 展开更多
关键词 Metro train regenerative braking energy energy feed-back system energy storage system power management
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部