A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,con...A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.展开更多
The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is ...The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.展开更多
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road...Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.展开更多
January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of...January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of global leaders,innovators,and changemakers.This year’s programme reflects the dynamic and evolving spirit of P2C,offering engaging discussions,interactive sessions,and valuable networking opportunities.Together,we will not only celebrate our collective achievements but also confront the challenges that remain—ensuring that progress toward digital inclusion is sustainable and equitable.展开更多
A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and m...A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and minds of the two peoples.From the screening of Chinese films in Thailand to the deepening collaboration within the film industry,the history of bilateral cinematic exchange not only showcases the unique value of film as a cultural medium but also reflects the resilience and vitality of grassroots cultural interactions amid a complex international landscape.This shared history,marked by both challenges and triumphs,has laid a solid foundation for future cultural cooperation,becoming a memorable chapter in the narrative of China-Thailand relations.展开更多
Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates ...Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates cellular behavior.Mechano-regulation processes involve matrix modification and cell activation to preserve tissue function.The ECM remodeling is crucial for force transmission.Cytoskeleton components are involved in force sensing and transmission,affecting cellular adhesion,motility,and gene expression.Proper mechanical loading helps to maintain tissue health,while imbalances may lead to pathological processes.Active and passive movement,including manual mobilization,improves connective tissue elasticity,promotes ECM-cell homeostasis,and reduces fibrosis.In rehabilitation,understanding mechanical-regulation processes is necessary for ameliorating and developing treatments aimed at preserving tissue elasticity and preventing fibrosis.In this commentary,we aim to globally describe the biological processes involved in mechanical force transmission in connective tissue as support for translational studies and clinical applications in the rehabilitation field.展开更多
AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive...AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.展开更多
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ...The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.展开更多
着力于增强办公软件的社会化分享能力,采用品牌架构、易用性、一致性、反馈机制和用户归属感等设计方法,整合办公软件与社交媒体的功能,致力于提升办公软件的用户体验,以云技术为技术支持,设计出一款基于Apache Open Office(AOO)的社会...着力于增强办公软件的社会化分享能力,采用品牌架构、易用性、一致性、反馈机制和用户归属感等设计方法,整合办公软件与社交媒体的功能,致力于提升办公软件的用户体验,以云技术为技术支持,设计出一款基于Apache Open Office(AOO)的社会化分享工具,实现了AOO与IBM Connections的集成,提升了AOO的社会化分享能力,开创了办公软件与IM以及社交媒体结合的先例。展开更多
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/...An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.展开更多
Based on geographic information system(GIS) spatial analysis technology, the spatial pattern of raster grid transport accessibility for the Guangdong-Hong Kong-Macao Greater Bay area was studied and the states of spat...Based on geographic information system(GIS) spatial analysis technology, the spatial pattern of raster grid transport accessibility for the Guangdong-Hong Kong-Macao Greater Bay area was studied and the states of spatial connectedness were simulated using highway passenger transport, railway passenger transport, port passenger transport and aviation passenger transport data. The result shows that transport accessibility within the Guangdong-Hong Kong-Macao Greater Bay area costs ‘one hour’ and the spatial distribution of accessibility in the area presents clear ‘core-periphery’ spatial characteristics, with Guangzhou, Foshan, Shenzhen constituting the core. The transport accessibility of Guangdong-Hong Kong-Macao is high. Average accessibility of urban nodes as measured by travel time is 0.99 h, and the areas accessible within 1.42 h occupy 79.14% of the total area. Most of the areas with the lowest accessibility are found in the peripheral area, with the worst accessibility being 4.73 h. Compared with the west-side cities, the economically developed east-side cities of the Guangdong-Hong Kong-Macao Greater Bay area have higher connectivity with roads, railways, ports, and aviation transport. Guangzhou, Foshan, Zhuhai, Shenzhen, Hong Kong and Macao are closely linked. The higher the accessibility, the closer the intercity connectedness.展开更多
An intermittent connection is one of the major problems that affect the network reliability and communication quality.However,little attention has been paid to the detection,analysis and localization of the intermitte...An intermittent connection is one of the major problems that affect the network reliability and communication quality.However,little attention has been paid to the detection,analysis and localization of the intermittent connections.Partially due to the limitations of the DeviceNet protocol,there is no effective online diagnostic tool available to identify the location of intermittent connection.On the basis of different DeviceNet fault scenarios induced by intermittent connections,a new graph-based diagnostic method is developed to analyze DeviceNet fault patterns,identify the corresponding fault scenarios,and infer the location of the intermittent connection problem by using passively captured network faults.A novel error source analysis tool,which integrates network data-link layer analysis and feature based network physical layer information,is developed to restore the snapshots of the network communication at each intermittent connection induced error.A graph based location identification method is developed to infer the location of the intermittent connections based on the restored error patterns.A 3-node laboratory test-bed,using master-slave polling communication method,is constructed to emulate the intermittent connection induced faults on the network drop cable by using digital switches,whose on/off states are controlled by a computer.During experiments,the network fault diagnosis is conducted by using information collected on trunk cable(backbone).Experimental study shows that the proposed method is effective to restore the snapshots of the network errors and locate the drop cable that experiences the intermittent connection problem.展开更多
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the...We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.展开更多
基金supported by the China Scholarship Council (Grant No.2018-0861-0211).
文摘A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.
文摘The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.
文摘Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.
文摘January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of global leaders,innovators,and changemakers.This year’s programme reflects the dynamic and evolving spirit of P2C,offering engaging discussions,interactive sessions,and valuable networking opportunities.Together,we will not only celebrate our collective achievements but also confront the challenges that remain—ensuring that progress toward digital inclusion is sustainable and equitable.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022JJ037).
文摘A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and minds of the two peoples.From the screening of Chinese films in Thailand to the deepening collaboration within the film industry,the history of bilateral cinematic exchange not only showcases the unique value of film as a cultural medium but also reflects the resilience and vitality of grassroots cultural interactions amid a complex international landscape.This shared history,marked by both challenges and triumphs,has laid a solid foundation for future cultural cooperation,becoming a memorable chapter in the narrative of China-Thailand relations.
文摘Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates cellular behavior.Mechano-regulation processes involve matrix modification and cell activation to preserve tissue function.The ECM remodeling is crucial for force transmission.Cytoskeleton components are involved in force sensing and transmission,affecting cellular adhesion,motility,and gene expression.Proper mechanical loading helps to maintain tissue health,while imbalances may lead to pathological processes.Active and passive movement,including manual mobilization,improves connective tissue elasticity,promotes ECM-cell homeostasis,and reduces fibrosis.In rehabilitation,understanding mechanical-regulation processes is necessary for ameliorating and developing treatments aimed at preserving tissue elasticity and preventing fibrosis.In this commentary,we aim to globally describe the biological processes involved in mechanical force transmission in connective tissue as support for translational studies and clinical applications in the rehabilitation field.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203).
文摘AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.
文摘The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.
文摘着力于增强办公软件的社会化分享能力,采用品牌架构、易用性、一致性、反馈机制和用户归属感等设计方法,整合办公软件与社交媒体的功能,致力于提升办公软件的用户体验,以云技术为技术支持,设计出一款基于Apache Open Office(AOO)的社会化分享工具,实现了AOO与IBM Connections的集成,提升了AOO的社会化分享能力,开创了办公软件与IM以及社交媒体结合的先例。
文摘An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
基金Under the auspices of National Natural Science Foundation of China(No.41671160,41701169)
文摘Based on geographic information system(GIS) spatial analysis technology, the spatial pattern of raster grid transport accessibility for the Guangdong-Hong Kong-Macao Greater Bay area was studied and the states of spatial connectedness were simulated using highway passenger transport, railway passenger transport, port passenger transport and aviation passenger transport data. The result shows that transport accessibility within the Guangdong-Hong Kong-Macao Greater Bay area costs ‘one hour’ and the spatial distribution of accessibility in the area presents clear ‘core-periphery’ spatial characteristics, with Guangzhou, Foshan, Shenzhen constituting the core. The transport accessibility of Guangdong-Hong Kong-Macao is high. Average accessibility of urban nodes as measured by travel time is 0.99 h, and the areas accessible within 1.42 h occupy 79.14% of the total area. Most of the areas with the lowest accessibility are found in the peripheral area, with the worst accessibility being 4.73 h. Compared with the west-side cities, the economically developed east-side cities of the Guangdong-Hong Kong-Macao Greater Bay area have higher connectivity with roads, railways, ports, and aviation transport. Guangzhou, Foshan, Zhuhai, Shenzhen, Hong Kong and Macao are closely linked. The higher the accessibility, the closer the intercity connectedness.
文摘An intermittent connection is one of the major problems that affect the network reliability and communication quality.However,little attention has been paid to the detection,analysis and localization of the intermittent connections.Partially due to the limitations of the DeviceNet protocol,there is no effective online diagnostic tool available to identify the location of intermittent connection.On the basis of different DeviceNet fault scenarios induced by intermittent connections,a new graph-based diagnostic method is developed to analyze DeviceNet fault patterns,identify the corresponding fault scenarios,and infer the location of the intermittent connection problem by using passively captured network faults.A novel error source analysis tool,which integrates network data-link layer analysis and feature based network physical layer information,is developed to restore the snapshots of the network communication at each intermittent connection induced error.A graph based location identification method is developed to infer the location of the intermittent connections based on the restored error patterns.A 3-node laboratory test-bed,using master-slave polling communication method,is constructed to emulate the intermittent connection induced faults on the network drop cable by using digital switches,whose on/off states are controlled by a computer.During experiments,the network fault diagnosis is conducted by using information collected on trunk cable(backbone).Experimental study shows that the proposed method is effective to restore the snapshots of the network errors and locate the drop cable that experiences the intermittent connection problem.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001)the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)
文摘We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.