Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ...Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.展开更多
In a cellular network,direct Device-to-Device(D2D)communication enhances Quality of Service(QoS)in terms of coverage,throughput and amount of power consumed.Since theD2D pairs involve cellular resources for communicat...In a cellular network,direct Device-to-Device(D2D)communication enhances Quality of Service(QoS)in terms of coverage,throughput and amount of power consumed.Since theD2D pairs involve cellular resources for communication,the chances of interference are high.D2D communications demand minimum interference along with maximum throughput and sum rate which can be achieved by employing optimal resources and efficient power allocation procedures.In this research,a hybrid optimization model called Genetic Algorithm-Adaptive Bat Optimization(GA-ABO)algorithm is proposed for efficient resource allocation in a cellular network with D2D communication.Simulation analysis demonstrates that the proposed model involves reduced interference with maximum sum rate and throughput.The performance of the proposed model is compared with the existing Ant Colony Optimization-based resource exchange and GAME(ACO-GAME)theory models,Trader-assistedResource EXchange mechanism-RadioAccess Network(TREX-RAN)and De-centralized Radio Access Network(TREXDRAN),and greedy CYcle-Complete preferences(CYC)models.The proposed model offers a maximum sum rate of 83 kB/s,which is much better than the existing techniques.展开更多
3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the s...3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical.展开更多
文摘Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.
文摘In a cellular network,direct Device-to-Device(D2D)communication enhances Quality of Service(QoS)in terms of coverage,throughput and amount of power consumed.Since theD2D pairs involve cellular resources for communication,the chances of interference are high.D2D communications demand minimum interference along with maximum throughput and sum rate which can be achieved by employing optimal resources and efficient power allocation procedures.In this research,a hybrid optimization model called Genetic Algorithm-Adaptive Bat Optimization(GA-ABO)algorithm is proposed for efficient resource allocation in a cellular network with D2D communication.Simulation analysis demonstrates that the proposed model involves reduced interference with maximum sum rate and throughput.The performance of the proposed model is compared with the existing Ant Colony Optimization-based resource exchange and GAME(ACO-GAME)theory models,Trader-assistedResource EXchange mechanism-RadioAccess Network(TREX-RAN)and De-centralized Radio Access Network(TREXDRAN),and greedy CYcle-Complete preferences(CYC)models.The proposed model offers a maximum sum rate of 83 kB/s,which is much better than the existing techniques.
文摘3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical.