Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical micro...The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical microscopy,scanning electron microscopy,energy dispersive spectrometry and electron backscatter diffraction.The results show that extrusion produces a typical basal fiber texture and streamlines of second phases.All samples exhibit the lowest Schmid factor of basal slip(SFb)and the superior tensile yield strength(TYS)along extrusion direction(ED).The sample with extrusion ratio of 20 exhibits the largest average grain size,but the smallest SFb which compensates for the disadvantage of grain coarsening and maintains the strength.After being peak-aged at 175℃for 48 h,the sample with the extrusion ratio of 20 shows the optimal TYS along all the directions,compared to the other samples.This hopes to provide useful information for optimizing the deformation parameters of the AZ42 alloys.展开更多
Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy wa...Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.展开更多
In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research fi...In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research findings demonstrate that both TC4 andβ-Mg_(17)Al_(12) phases contribute to promoting dynamic recrystallization(DRX)nucleation.With increasing extrusion ratio,theβ-phase(Mg_(17)Al_(12))gradually fractures into smaller particles,leading to progressive grain refinement.Furthermore,the transition from〈01-10〉fiber texture to non-basal texture in theα-Mg matrix after hot extrusion is attributed to improved DRX behavior and activation of non-basal slip.As the extrusion ratio increases,the tensile strength and elongation(EL)of TC4_(p)/AZ91D composite improve significantly,reaching optimum comprehensive mechanical properties at an extrusion of 40:1 with a yield strength(YS)of 257 MPa,an ultimate tensile strength(UTS)of 357 MPa,and an EL of 9.7%.This remarkable strengthening effect is primarily attributed toβ-phase reinforcement,grain refinement strengthening,and strain hardening.展开更多
To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,t...To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied....BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied.However,for using tendon autograft for meniscus reconstruction,both graft type and surgical method are different from those in previous studies on meniscus extrusion.AIM To identify predictive factors for coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.METHODS Ten patients who underwent medial meniscus reconstruction with tendon autograft were selected for this retrospective observational study.The graft extrusions and potential factors were measured and correlation and regression analyses were performed to analyze their relationships.RESULTS The medial graft extrusion correlated with the preoperative bilateral hip-kneeankle angle difference,preoperative Kellgren-Lawrence grade,preoperative relative joint space width,and preoperative bilateral medial edge incline angle difference.The anterior graft correlated with the anterior tunnel edge distance at 1 week after operation.The posterior graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference,preoperative relative joint space width,and posterior tunnel edge distance at 1 week after operation.The mean graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference and preoperative relative joint space width.The preoperative joint space width and anterior and posterior tunnel edge distance at 1 week can be used to predict the medial,anterior,posterior,and mean graft extrusion length.CONCLUSION The preoperative joint space width and tunnel position can be used to predict the coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.展开更多
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p...In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.展开更多
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism...Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.展开更多
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi...Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.展开更多
An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equa...An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equations for assessing the grain size evolution.Calibration and validation of this methodology involved a combination of experimentally acquired microstructural data from the extrusion of three different AA6063 profiles and results from the simulation using the Qform Extrusion UK finite element code.The outcomes proved the agreement between experimental findings and numerical prediction of the microstructural evolution.The trend of the grain size variation based on different process parameters was accurately simulated,both after dynamic and static recrystallization,with an error of less than 25% in almost the whole sampling computations.展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The ...Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The aim of the study was to increase the mineral bioaccessibility in co-extruded millet flours enriched with Moringa and Baobab for vulnerable populations. Methods: Three extruded instant formulas were developed using pearl millet, Moringa and Baobab powders: FA (90% Millet + 10% Baobab);FB (90% Millet + 10% Moringa);FC (80% Millet + 10% Baobab + 10% Moringa). Non-extruded formulations of FA, FB and FC were used as controls. Then treatments and controls were analyzed to determine their percent mineral bioaccessibility using the in vitro equilibrium dialysability method (Miller et al., 1981) and their total amounts bioaccessible according to the Burgos et al., 2018 method. Phytates in all samples were also determined using the Method of Fruhbeck et al., 1995. Results: Extrusion cooking significantly improved iron bioaccessible percentages in co-extruded flours respectively in FB and FC (p . Extrusion significantly reduced the percentages and amounts of bioaccessible zinc and calcium in all extruded flours compared to their controls (p Conclusion: Extrusion cooking reduced the chelation effect of phytates by thermal degradation, which led to a modification in the bioavailability of minerals. Food-to-food fortification and extrusion cooking displayed a positive effect on the bioaccessibility of iron, magnesium and phosphorus. For calcium and zinc, extrusion has no positive effect on their bioaccessibilities. However, with daily consumption, co-extruded fortified flours could be used as a way to fight against malnutrition in vulnerable populations.展开更多
Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacr...Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacrificing elongation-to-failure(~22.1-27.6%)was developed by utilizing casting,pre-treatment and hot extrusion.Strong random rather than basal texture is observed both in as-cast and pre-treatment samples.Subsequently,the strong texture is effectively weakened via hot extrusion whilst remaining random.More importantly,after hot extrusion,the grain sizes of as-cast and pre-treatment samples were significantly refined down to about 10μm.Examination of as-extruded microstructures of the alloy reveals that the grain refinement is highly associated with the particle stimulated nucleation(PSN)and continuous/discontinuous dynamic recrystallization(C/DDRX)mechanisms.Moreover,the results suggest that the combination of pre-treatment and hot extrusion not only promotes multiplication of geometrically-necessary dislocations(GNDs)but enhances dynamic precipitation,which boosts the formation of fine and homogenous precipitates.Based on the results of X-ray diffraction(XRD),transmission electron microscope(TEM)and selected area electron diffraction(SAED),the precipitates are Mg_(2)Sn phases.Furthermore,the main orientation relationship identified by high resolution TEM(HRTEM)between Mg_(2)Sn phases andα-Mg matrix could be described as(111)Mg_(2)Snor(220)Mg_(2)Sn∥(0001)Mgwith a coherent interface.The refined grains size,ultra-fine precipitates and high density of GNDs would substantially contribute to the enhancement of the strength and the corresponding contributions are calculated to be~183-185 MPa,~30.9-38 MPa and~14.2-31.7 MPa,respectively.Besides,texture weakening or randomizing,grain refinement and coherent interfaces are mainly responsible for the high ductility.The current study can provide beneficial insights into the development of high-performance rare-earth-free Mg alloys with favorable microstructure via a combination of casting,pre-treatment and hot extrusion processing.展开更多
With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surr...With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surrounding rock in deep underground engineering.The traditional rock bolt is prone to brittle fracture under high geo-stress due to its low elongation.Therefore,this work aims to develop a novel energy-absorbing bolt with constant resistance and large displacement to reinforce the surrounding rock with a risk of large deformation or rockburst.The novel energy-absorbing bolt refereed as rolling extrusion rock bolt(RE bolt)is mainly consists of sleeve tube with a variable cross-section,energy absorption slider with steel balls embedded,steel bar connected with the energy absorption slider.The rolling extrusion is adopted to produce the resistance force of the RE bolt,which avoids the sudden attenuation of resistance force and the abrasion of the energy absorption slider.The static pull test is conducted to study the resistance force and deformation characteristics of the RE bolt with different specifications.Results imply that the RE bolt has higher resistance force,larger deformation capacity and energy absorption capacity.The work of this study provides an effective solution for the reinforcement of surrounding rock in deep rock engineering.展开更多
To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on ...The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.展开更多
The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were ...The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.展开更多
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
基金supported by the National Natural Science Foundation of China(No.51904036)the Hunan Provincial Key Research and Development Program,China(No.2023GK2049)+2 种基金Changsha Municipal Natural Science Foundation,China(Nos.kq2402016,kq2402014)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20240772)the Sichuan Science and Technology Program,China(No.2024NSFSC0151)。
文摘The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical microscopy,scanning electron microscopy,energy dispersive spectrometry and electron backscatter diffraction.The results show that extrusion produces a typical basal fiber texture and streamlines of second phases.All samples exhibit the lowest Schmid factor of basal slip(SFb)and the superior tensile yield strength(TYS)along extrusion direction(ED).The sample with extrusion ratio of 20 exhibits the largest average grain size,but the smallest SFb which compensates for the disadvantage of grain coarsening and maintains the strength.After being peak-aged at 175℃for 48 h,the sample with the extrusion ratio of 20 shows the optimal TYS along all the directions,compared to the other samples.This hopes to provide useful information for optimizing the deformation parameters of the AZ42 alloys.
基金the financial support from the National Natural Science Foundation of China(No.12164004)the Jiangxi Provincial Natural Science Foundation(Nos.20242BAB25210,20232BCJ25067,20232BAB214004 and 20224BAB204029)+2 种基金the Foundation of Education Department of Jiangxi Provincial(Nos.GJJ2201247 and GJJ211436)the Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province(No.JAT231008)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd(SIMR).
文摘Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.
基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the Guangdong Provincial Academy of Sciences Fund(2020GDASYL-20200101001)the Natural Science Foundation of Hubei Province,China(2023AFB1033).
文摘In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research findings demonstrate that both TC4 andβ-Mg_(17)Al_(12) phases contribute to promoting dynamic recrystallization(DRX)nucleation.With increasing extrusion ratio,theβ-phase(Mg_(17)Al_(12))gradually fractures into smaller particles,leading to progressive grain refinement.Furthermore,the transition from〈01-10〉fiber texture to non-basal texture in theα-Mg matrix after hot extrusion is attributed to improved DRX behavior and activation of non-basal slip.As the extrusion ratio increases,the tensile strength and elongation(EL)of TC4_(p)/AZ91D composite improve significantly,reaching optimum comprehensive mechanical properties at an extrusion of 40:1 with a yield strength(YS)of 257 MPa,an ultimate tensile strength(UTS)of 357 MPa,and an EL of 9.7%.This remarkable strengthening effect is primarily attributed toβ-phase reinforcement,grain refinement strengthening,and strain hardening.
基金supported by the Key Project of Chinese Academy of Engineering(No.2019-XZ-11)the General Project of Chinese Academy of Engineering(No.2023-XY-18)+1 种基金the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials of China(No.HKDNM201907)the Independent Project of State Key Laboratory of Powder Metallurgy,China。
文摘To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
文摘BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied.However,for using tendon autograft for meniscus reconstruction,both graft type and surgical method are different from those in previous studies on meniscus extrusion.AIM To identify predictive factors for coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.METHODS Ten patients who underwent medial meniscus reconstruction with tendon autograft were selected for this retrospective observational study.The graft extrusions and potential factors were measured and correlation and regression analyses were performed to analyze their relationships.RESULTS The medial graft extrusion correlated with the preoperative bilateral hip-kneeankle angle difference,preoperative Kellgren-Lawrence grade,preoperative relative joint space width,and preoperative bilateral medial edge incline angle difference.The anterior graft correlated with the anterior tunnel edge distance at 1 week after operation.The posterior graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference,preoperative relative joint space width,and posterior tunnel edge distance at 1 week after operation.The mean graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference and preoperative relative joint space width.The preoperative joint space width and anterior and posterior tunnel edge distance at 1 week can be used to predict the medial,anterior,posterior,and mean graft extrusion length.CONCLUSION The preoperative joint space width and tunnel position can be used to predict the coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.
基金support from China Scholarship Council(No.202107000038)the Na-tional Natural Science Foundation of China(52004227).
文摘In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.
基金National Natural Science Foundation of China(U22B20131)State Key Laboratory of Explosion Science and Technology(QNKT23-10)for supporting this project.
文摘Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.
基金supported by the Hunan Provincial Natural Science Foundation of China (Grant no.2023JJ30632)National Key R&D Program (Grant no.2022YFC2204403)Key R&D Program of Hunan Province (Grant no.2022GK2027)。
文摘Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.
文摘An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equations for assessing the grain size evolution.Calibration and validation of this methodology involved a combination of experimentally acquired microstructural data from the extrusion of three different AA6063 profiles and results from the simulation using the Qform Extrusion UK finite element code.The outcomes proved the agreement between experimental findings and numerical prediction of the microstructural evolution.The trend of the grain size variation based on different process parameters was accurately simulated,both after dynamic and static recrystallization,with an error of less than 25% in almost the whole sampling computations.
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The aim of the study was to increase the mineral bioaccessibility in co-extruded millet flours enriched with Moringa and Baobab for vulnerable populations. Methods: Three extruded instant formulas were developed using pearl millet, Moringa and Baobab powders: FA (90% Millet + 10% Baobab);FB (90% Millet + 10% Moringa);FC (80% Millet + 10% Baobab + 10% Moringa). Non-extruded formulations of FA, FB and FC were used as controls. Then treatments and controls were analyzed to determine their percent mineral bioaccessibility using the in vitro equilibrium dialysability method (Miller et al., 1981) and their total amounts bioaccessible according to the Burgos et al., 2018 method. Phytates in all samples were also determined using the Method of Fruhbeck et al., 1995. Results: Extrusion cooking significantly improved iron bioaccessible percentages in co-extruded flours respectively in FB and FC (p . Extrusion significantly reduced the percentages and amounts of bioaccessible zinc and calcium in all extruded flours compared to their controls (p Conclusion: Extrusion cooking reduced the chelation effect of phytates by thermal degradation, which led to a modification in the bioavailability of minerals. Food-to-food fortification and extrusion cooking displayed a positive effect on the bioaccessibility of iron, magnesium and phosphorus. For calcium and zinc, extrusion has no positive effect on their bioaccessibilities. However, with daily consumption, co-extruded fortified flours could be used as a way to fight against malnutrition in vulnerable populations.
基金National Natural Science Foundation of China(No.12162023)The Key Talent Projects of Gansu Province,Gansu Basic Research Innovation Group Project(No.23JRRA757)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacrificing elongation-to-failure(~22.1-27.6%)was developed by utilizing casting,pre-treatment and hot extrusion.Strong random rather than basal texture is observed both in as-cast and pre-treatment samples.Subsequently,the strong texture is effectively weakened via hot extrusion whilst remaining random.More importantly,after hot extrusion,the grain sizes of as-cast and pre-treatment samples were significantly refined down to about 10μm.Examination of as-extruded microstructures of the alloy reveals that the grain refinement is highly associated with the particle stimulated nucleation(PSN)and continuous/discontinuous dynamic recrystallization(C/DDRX)mechanisms.Moreover,the results suggest that the combination of pre-treatment and hot extrusion not only promotes multiplication of geometrically-necessary dislocations(GNDs)but enhances dynamic precipitation,which boosts the formation of fine and homogenous precipitates.Based on the results of X-ray diffraction(XRD),transmission electron microscope(TEM)and selected area electron diffraction(SAED),the precipitates are Mg_(2)Sn phases.Furthermore,the main orientation relationship identified by high resolution TEM(HRTEM)between Mg_(2)Sn phases andα-Mg matrix could be described as(111)Mg_(2)Snor(220)Mg_(2)Sn∥(0001)Mgwith a coherent interface.The refined grains size,ultra-fine precipitates and high density of GNDs would substantially contribute to the enhancement of the strength and the corresponding contributions are calculated to be~183-185 MPa,~30.9-38 MPa and~14.2-31.7 MPa,respectively.Besides,texture weakening or randomizing,grain refinement and coherent interfaces are mainly responsible for the high ductility.The current study can provide beneficial insights into the development of high-performance rare-earth-free Mg alloys with favorable microstructure via a combination of casting,pre-treatment and hot extrusion processing.
基金the support of the Natural Science Foundation of Hubei Province(2023AFB589)Natural Science Foundation of Chongqing(Grant No.2023NSCQ-LZX0070).
文摘With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surrounding rock in deep underground engineering.The traditional rock bolt is prone to brittle fracture under high geo-stress due to its low elongation.Therefore,this work aims to develop a novel energy-absorbing bolt with constant resistance and large displacement to reinforce the surrounding rock with a risk of large deformation or rockburst.The novel energy-absorbing bolt refereed as rolling extrusion rock bolt(RE bolt)is mainly consists of sleeve tube with a variable cross-section,energy absorption slider with steel balls embedded,steel bar connected with the energy absorption slider.The rolling extrusion is adopted to produce the resistance force of the RE bolt,which avoids the sudden attenuation of resistance force and the abrasion of the energy absorption slider.The static pull test is conducted to study the resistance force and deformation characteristics of the RE bolt with different specifications.Results imply that the RE bolt has higher resistance force,larger deformation capacity and energy absorption capacity.The work of this study provides an effective solution for the reinforcement of surrounding rock in deep rock engineering.
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
基金Project (51175055) supported by the National Natural Science Foundation of ChinaProject (201102020) supported by the Natural Science Foundation of Liaoning Province, ChinaProject (200921085) supported by the Liaoning BaiQian Wan Talents Program, China
文摘The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
基金Projects(51034002,50974038,50274020) supported by the National Natural Science Foundation of China
文摘The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.