Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv...Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.展开更多
Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial expe...Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial experiment with asymmetric warming using infrared heaters and moderate grazing in an alpine meadow.Litter samples were collected from all plots in each treatment,among which some subsamples were placed in their original plots and other samples were translocated to other treatment plots to test the relative effects of each treatment on litter decomposition and nutrient releases.We found that warming rather than grazing alone significantly increased total losses of litter mass,total organic carbon,total nitrogen(TN)and total phosphorus(TP)per unit area due to increases in both mass loss rates and ltter biomass.However,grazing with warming did not affect their total mass losses because increased mass loss was offset by decreased litter biomass compared with the control.Seasonal mean soil temperature better predicted litter decomposition than litter lignin content or carbon to nitrogen ratio.There were interactions between warming and grazing,but there were no interactions between them and litter quality on litter decomposition.The temperature sensitivity of TN loss was higher than that of TP loss per unit area.Our results suggest that increased temperature has a greater effect on litter decomposition and nutrient release than change in litter quality,and that more N release from litter could result in greater P deficiency in the alpine meadow.展开更多
基金This work was supported by the Project of Natural Science Foundation of Anhui Province,China(2008085qc118)the National Natural Science Foundation of China(U19A2021)+1 种基金the Major Science and Technology Special Project of Anhui Province,China(S202003a06020035)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.
基金the Joint Key Research Fund under a cooperative agreement between the National Natural Science Foundation of China(NSFC)and Tibet Autonomous Region(TAR)(U20A2005)the National Natural Science Foundation of China(41731175,31872994_and 31770524)+1 种基金the Strategic Priority Research Program A of theChineseAcademyof Sciences(XDA20050101)the Second Tibetan Plateau Scientific Expedition and Research(STEP) program(2019QZKK0608 and 2019QZKK0302)。
文摘Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial experiment with asymmetric warming using infrared heaters and moderate grazing in an alpine meadow.Litter samples were collected from all plots in each treatment,among which some subsamples were placed in their original plots and other samples were translocated to other treatment plots to test the relative effects of each treatment on litter decomposition and nutrient releases.We found that warming rather than grazing alone significantly increased total losses of litter mass,total organic carbon,total nitrogen(TN)and total phosphorus(TP)per unit area due to increases in both mass loss rates and ltter biomass.However,grazing with warming did not affect their total mass losses because increased mass loss was offset by decreased litter biomass compared with the control.Seasonal mean soil temperature better predicted litter decomposition than litter lignin content or carbon to nitrogen ratio.There were interactions between warming and grazing,but there were no interactions between them and litter quality on litter decomposition.The temperature sensitivity of TN loss was higher than that of TP loss per unit area.Our results suggest that increased temperature has a greater effect on litter decomposition and nutrient release than change in litter quality,and that more N release from litter could result in greater P deficiency in the alpine meadow.