In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the opera...In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the operating time with no influence of the normal operation of circuits. In this paper, a Dou- ble-edge-triggered Detection Sensor for circuit Aging (DSDA) is proposed, which employs data signal of logic circuits as its clock to control the sampling process. The simulation is done by Hspice using 45 nm technology. The results show that this technique is not case of the detection precision is more than 80% under aging fault effectively with the 8% power cost and 30% sensitive to the process variations. The worst the different process variations. It can detect performance cost.展开更多
With a 45 nm process technique, the shrinking silicon feature size brings in a high-k/metal gate which significantly exacerbates the positive bias temperature instability (PBTI) and time-dependent dielectric breakdo...With a 45 nm process technique, the shrinking silicon feature size brings in a high-k/metal gate which significantly exacerbates the positive bias temperature instability (PBTI) and time-dependent dielectric breakdown (TDDB) effects of a NMOS transistor. However, previous works presented delay models to characterize the PBTI or TDDB individually. This paper demonstrates that the delay caused by the joint effects of PBTI and TDDB widely differs from the cumulated result of the delay caused by the PBT| and TDDB, respectively, with the experiments on an inverter chain. This paper proposes a hybrid aging delay model comprising both the PBTI and TDDB effects by analyzing the relationship between the aging propagation delay and the inherent delay of the gate. Experimental results on the logic gates under 45 nm, 32 nm, 22 nm, and 16 nm CMOS technologies show that the maximum error between the proposed model and the actual value is less than 2.5%, meanwhile the average error is about 1.5%.展开更多
As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging...As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator(PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28×298.94 μm^2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.展开更多
基金Supported by the National Natural Science Foundation of China (No.61274036 and 61106038)Anhui Provincial Natural Science Foundation of China (No.090412034)
文摘In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the operating time with no influence of the normal operation of circuits. In this paper, a Dou- ble-edge-triggered Detection Sensor for circuit Aging (DSDA) is proposed, which employs data signal of logic circuits as its clock to control the sampling process. The simulation is done by Hspice using 45 nm technology. The results show that this technique is not case of the detection precision is more than 80% under aging fault effectively with the 8% power cost and 30% sensitive to the process variations. The worst the different process variations. It can detect performance cost.
基金supported by the National Natural Science Foundation of China under Grant No.61371025 and No.61274036
文摘With a 45 nm process technique, the shrinking silicon feature size brings in a high-k/metal gate which significantly exacerbates the positive bias temperature instability (PBTI) and time-dependent dielectric breakdown (TDDB) effects of a NMOS transistor. However, previous works presented delay models to characterize the PBTI or TDDB individually. This paper demonstrates that the delay caused by the joint effects of PBTI and TDDB widely differs from the cumulated result of the delay caused by the PBT| and TDDB, respectively, with the experiments on an inverter chain. This paper proposes a hybrid aging delay model comprising both the PBTI and TDDB effects by analyzing the relationship between the aging propagation delay and the inherent delay of the gate. Experimental results on the logic gates under 45 nm, 32 nm, 22 nm, and 16 nm CMOS technologies show that the maximum error between the proposed model and the actual value is less than 2.5%, meanwhile the average error is about 1.5%.
基金Project supported by the National Natural Science Foundation of China(Nos.61274132,61404076)the Zhejiang Provincial Natural Science Foundation of China(No.LQ14F040001)+2 种基金the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y201430798)the Subject Fund of Ningbo University(Nos.XKL141037,XYL14001)the K.C.Wong Magna Fund in Ningbo University,China
文摘As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator(PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28×298.94 μm^2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.