期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
1
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
在线阅读 下载PDF
Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning 被引量:1
2
作者 K.Akilandeswari Nithya Rekha Sivakumar +2 位作者 Hend Khalid Alkahtani Shakila Basheer Sara Abdelwahab Ghorashi 《Computers, Materials & Continua》 SCIE EI 2024年第1期1189-1205,共17页
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor... In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods. 展开更多
关键词 Internet of Things smart health care monitoring human activity recognition intelligent agent learning statistical partial regression support vector
在线阅读 下载PDF
An Investigation of Frequency-Domain Pruning Algorithms for Accelerating Human Activity Recognition Tasks Based on Sensor Data
3
作者 Jian Su Haijian Shao +1 位作者 Xing Deng Yingtao Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第11期2219-2242,共24页
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec... The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%. 展开更多
关键词 Convolutional neural networks human activity recognition network pruning frequency-domain transformation
在线阅读 下载PDF
TransTM:A device-free method based on time-streaming multiscale transformer for human activity recognition
4
作者 Yi Liu Weiqing Huang +4 位作者 Shang Jiang Bobai Zhao Shuai Wang Siye Wang Yanfang Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期619-628,共10页
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still... RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published. 展开更多
关键词 Human activity recognition RFID TRANSFORMER
在线阅读 下载PDF
A Novel Method for Cross-Subject Human Activity Recognition with Wearable Sensors
5
作者 Qi Zhang Feng Jiang +4 位作者 Xun Wang Jinnan Duan Xiulai Wang Ningling Ma Yutao Zhang 《Journal of Sensor Technology》 2024年第2期17-34,共18页
Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recogn... Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots. 展开更多
关键词 Human activity recognition Cross-Subject Adaptation Semi-Supervised Learning Wearable Sensors
在线阅读 下载PDF
Optimal Features Selection for Human Activity Recognition (HAR) System Using Deep Learning Architectures
6
作者 Subrata Kumer Paul Rakhi Rani Paul +2 位作者 Md. Atikur Rahman Md. Momenul Haque Md. Ekramul Hamid 《Journal of Computer and Communications》 2024年第12期16-33,共18页
One exciting area within computer vision is classifying human activities, which has diverse applications like medical informatics, human-computer interaction, surveillance, and task monitoring systems. In the healthca... One exciting area within computer vision is classifying human activities, which has diverse applications like medical informatics, human-computer interaction, surveillance, and task monitoring systems. In the healthcare field, understanding and classifying patients’ activities is crucial for providing doctors with essential information for medication reactions and diagnosis. While some research methods already exist, utilizing machine learning and soft computational algorithms to recognize human activity from videos and images, there’s ongoing exploration of more advanced computer vision techniques. This paper introduces a straightforward and effective automated approach that involves five key steps: preprocessing, feature extraction technique, feature selection, feature fusion, and finally classification. To evaluate the proposed approach, two commonly used benchmark datasets KTH and Weizmann are employed for training, validation, and testing of ML classifiers. The study’s findings show that the first and second datasets had remarkable accuracy rates of 99.94% and 99.80%, respectively. When compared to existing methods, our approach stands out in terms of sensitivity, accuracy, precision, and specificity evaluation metrics. In essence, this paper demonstrates a practical method for automatically classifying human activities using an optimal feature fusion and deep learning approach, promising a great result that could benefit various fields, particularly in healthcare. 展开更多
关键词 SURVEILLANCE Optimal Feature SVM Complex Tree Human activity recognition Feature Fusion
在线阅读 下载PDF
DL-HAR: Deep Learning-Based Human Activity Recognition Framework for Edge Computing 被引量:8
7
作者 Abdu Gumaei Mabrook Al-Rakhami +2 位作者 Hussain AlSalman Sk.Md.Mizanur Rahman Atif Alamri 《Computers, Materials & Continua》 SCIE EI 2020年第11期1033-1057,共25页
Human activity recognition is commonly used in several Internet of Things applications to recognize different contexts and respond to them.Deep learning has gained momentum for identifying activities through sensors,s... Human activity recognition is commonly used in several Internet of Things applications to recognize different contexts and respond to them.Deep learning has gained momentum for identifying activities through sensors,smartphones or even surveillance cameras.However,it is often difficult to train deep learning models on constrained IoT devices.The focus of this paper is to propose an alternative model by constructing a Deep Learning-based Human Activity Recognition framework for edge computing,which we call DL-HAR.The goal of this framework is to exploit the capabilities of cloud computing to train a deep learning model and deploy it on less-powerful edge devices for recognition.The idea is to conduct the training of the model in the Cloud and distribute it to the edge nodes.We demonstrate how the DL-HAR can perform human activity recognition at the edge while improving efficiency and accuracy.In order to evaluate the proposed framework,we conducted a comprehensive set of experiments to validate the applicability of DL-HAR.Experimental results on the benchmark dataset show a significant increase in performance compared with the state-of-the-art models. 展开更多
关键词 Human activity recognition edge computing deep neural network recurrent neural network DOCKER
在线阅读 下载PDF
Human activity recognition based on HMM by improved PSO and event probability sequence 被引量:3
8
作者 Hanju Li Yang Yi +1 位作者 Xiaoxing Li Zixin Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期545-554,共10页
This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better bala... This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets. 展开更多
关键词 human activity recognition hidden Markov model (HMM) event probability sequence (EPS) particle swarm optimization (PSO).
在线阅读 下载PDF
An approach for complex activity recognition by key frames 被引量:2
9
作者 夏利民 时晓亭 涂宏斌 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3450-3457,共8页
A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy(PBS) was employed to divide the complex activity into a series of simple activities and the key f... A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy(PBS) was employed to divide the complex activity into a series of simple activities and the key frames representing the simple activities were extracted by the self-splitting competitive learning(SSCL) algorithm. A new similarity criterion of complex activities was defined. Besides the regular visual factor, the order factor and the interference factor measuring the timing matching relationship of the simple activities and the discontinuous matching relationship of the simple activities respectively were considered. On these bases, the complex human activity recognition could be achieved by calculating their similarities. The recognition error was reduced compared with other methods when ignoring the recognition of simple activities. The proposed method was tested and evaluated on the self-built broadcast gymnastic database and the dancing database. The experimental results prove the superior efficiency. 展开更多
关键词 human activity recognition complex activity segmentation key frame extraction
在线阅读 下载PDF
RGB-Depth Feature for 3D Human Activity Recognition 被引量:2
10
作者 赵洋 LIU Zicheng 程洪 《China Communications》 SCIE CSCD 2013年第7期93-103,共11页
We study the problem of humanactivity recognition from RGB-Depth(RGBD)sensors when the skeletons are not available.The skeleton tracking in Kinect SDK workswell when the human subject is facing thecamera and there are... We study the problem of humanactivity recognition from RGB-Depth(RGBD)sensors when the skeletons are not available.The skeleton tracking in Kinect SDK workswell when the human subject is facing thecamera and there are no occlusions.In surveillance or nursing home monitoring scenarios,however,the camera is usually mounted higher than human subjects,and there may beocclusions.The interest-point based approachis widely used in RGB based activity recognition,it can be used in both RGB and depthchannels.Whether we should extract interestpoints independently of each channel or extract interest points from only one of thechannels is discussed in this paper.The goal ofthis paper is to compare the performances ofdifferent methods of extracting interest points.In addition,we have developed a depth mapbased descriptor and built an RGBD dataset,called RGBD-SAR,for senior activity recognition.We show that the best performance isachieved when we extract interest points solely from RGB channels,and combine the RGBbased descriptors with the depth map-baseddescriptors.We also present a baseline performance of the RGBD-SAR dataset. 展开更多
关键词 KINECT depth map activity recognition
在线阅读 下载PDF
Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services 被引量:2
11
作者 E.Dhiravidachelvi M.Suresh Kumar +4 位作者 L.D.Vijay Anand D.Pritima Seifedine Kadry Byeong-Gwon Kang Yunyoung Nam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期961-977,共17页
Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,... Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures. 展开更多
关键词 Artificial intelligence human activity recognition deep learning deep belief network hyperparameter tuning healthcare
在线阅读 下载PDF
Research on Human Activity Recognition Algorithm Based on LSTM-1DCNN 被引量:1
12
作者 Yuesheng Zhao Xiaoling Wang +1 位作者 Yutong Luo Muhammad Shamrooz Aslam 《Computers, Materials & Continua》 SCIE EI 2023年第12期3325-3347,共23页
With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of... With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer.This algorithm comprises two branches:one branch consists of a Long and Short-Term Memory Network(LSTM),while the other parallel branch incorporates a one-dimensional Convolutional Neural Network(1DCNN).The parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data separately,which are then concatenated and fed into a fully connected neural network for information fusion.In the LSTM-1DCNN architecture,the 1DCNN branch primarily focuses on extracting spatial features during convolution operations,whereas the LSTM branch mainly captures temporal features.Nine sets of accelerometer data from five publicly available HAR datasets are employed for training and evaluation purposes.The performance of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,Random Forest,Support Vector Machine,1DCNN,and LSTM on these five public datasets.Experimental results demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36%to 99.68%,with a mean value of 96.22%and standard deviation of 0.03 across all evaluated metrics on these five public datasets-outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study.Finally the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human activities for training and testing purposes.Subsequently,the trained HAR algorithm is deployed on Android phones to evaluate its performance.Experimental results demonstrate that the proposed LSTM-1DCNN algorithm achieves an impressive F1-score of 97.67%on our self-built dataset.In conclusion,the fusion of temporal and spatial information in the measured data contributes to the excellent HAR performance and robustness exhibited by the proposed 1DCNN-LSTM architecture. 展开更多
关键词 Human activity recognition ACCELEROMETER CNN LSTM DEPLOYMENT temporal and spatial information
在线阅读 下载PDF
Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences 被引量:1
13
作者 Umair Muneer Butt Hadiqa Aman Ullah +3 位作者 Sukumar Letchmunan Iqra Tariq Fadratul Hafinaz Hassan Tieng Wei Koh 《Computers, Materials & Continua》 SCIE EI 2023年第3期5017-5033,共17页
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments... Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets. 展开更多
关键词 Human activity recognition deep learning transfer learning neural network ensemble learning SPATIO-TEMPORAL
在线阅读 下载PDF
Optimal Deep Convolutional Neural Network with Pose Estimation for Human Activity Recognition 被引量:1
14
作者 S.Nandagopal G.Karthy +1 位作者 A.Sheryl Oliver M.Subha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1719-1733,共15页
Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction... Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction,robot vision,etc.Though considerable improvements have been made in recent days,design of an effective and accurate action recognition model is yet a difficult process owing to the existence of different obstacles such as variations in camera angle,occlusion,background,movement speed,and so on.From the literature,it is observed that hard to deal with the temporal dimension in the action recognition process.Convolutional neural network(CNN)models could be used widely to solve this.With this motivation,this study designs a novel key point extraction with deep convolutional neural networks based pose estimation(KPE-DCNN)model for activity recognition.The KPE-DCNN technique initially converts the input video into a sequence of frames followed by a three stage process namely key point extraction,hyperparameter tuning,and pose estimation.In the keypoint extraction process an OpenPose model is designed to compute the accurate key-points in the human pose.Then,an optimal DCNN model is developed to classify the human activities label based on the extracted key points.For improving the training process of the DCNN technique,RMSProp optimizer is used to optimally adjust the hyperparameters such as learning rate,batch size,and epoch count.The experimental results tested using benchmark dataset like UCF sports dataset showed that KPE-DCNN technique is able to achieve good results compared with benchmark algorithms like CNN,DBN,SVM,STAL,T-CNN and so on. 展开更多
关键词 Human activity recognition pose estimation key point extraction classification deep learning RMSProp
在线阅读 下载PDF
An Efficient ResNetSE Architecture for Smoking Activity Recognition from Smartwatch 被引量:1
15
作者 Narit Hnoohom Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1245-1259,共15页
Smoking is a major cause of cancer,heart disease and other afflictions that lead to early mortality.An effective smoking classification mechanism that provides insights into individual smoking habits would assist in i... Smoking is a major cause of cancer,heart disease and other afflictions that lead to early mortality.An effective smoking classification mechanism that provides insights into individual smoking habits would assist in implementing addiction treatment initiatives.Smoking activities often accompany other activities such as drinking or eating.Consequently,smoking activity recognition can be a challenging topic in human activity recognition(HAR).A deep learning framework for smoking activity recognition(SAR)employing smartwatch sensors was proposed together with a deep residual network combined with squeeze-and-excitation modules(ResNetSE)to increase the effectiveness of the SAR framework.The proposed model was tested against basic convolutional neural networks(CNNs)and recurrent neural networks(LSTM,BiLSTM,GRU and BiGRU)to recognize smoking and other similar activities such as drinking,eating and walking using the UT-Smoke dataset.Three different scenarios were investigated for their recognition performances using standard HAR metrics(accuracy,F1-score and the area under the ROC curve).Our proposed ResNetSE outperformed the other basic deep learning networks,with maximum accuracy of 98.63%. 展开更多
关键词 Smoking activity recognition deep residual network smartwatch sensors deep learning
在线阅读 下载PDF
Human Activity Recognition and Embedded Application Based on Convolutional Neural Network 被引量:4
16
作者 Yang Xu Ting Ting Qiu 《Journal of Artificial Intelligence and Technology》 2021年第1期51-60,共10页
With the improvement of people’s living standards,the demand for health monitoring and exercise detection is increasing.It is of great significance to study human activity recognition(HAR)methods that are different f... With the improvement of people’s living standards,the demand for health monitoring and exercise detection is increasing.It is of great significance to study human activity recognition(HAR)methods that are different from traditional feature extraction methods.This article uses convolutional neural network(CNN)algorithms in deep learning to automatically extract features of activities related to human life.We used a stochastic gradient descent algorithm to optimize the parameters of the CNN.The trained network model is compressed on STM32CubeMX-AI.Finally,this article introduces the use of neural networks on embedded devices to recognize six human activities of daily life,such as sitting,standing,walking,jogging,upstairs,and downstairs.The acceleration sensor related to human activity information is used to obtain the relevant characteristics of the activity,thereby solving the HAR problem.By drawing the accuracy curve,loss function curve,and confusion matrix diagram of the training model,the recognition effect of the convolutional neural network can be seen more intuitively.After comparing the average accuracy of each set of experiments and the test set of the best model obtained from it,the best model is then selected. 展开更多
关键词 human activity recognition convolutional neural network STM32F767 STM32CubeMX-AI
在线阅读 下载PDF
Human Activity Recognition in a Realistic and Multiview Environment Based on Two-Dimensional Convolutional Neural Network 被引量:1
17
作者 Ashish KhareArati Kushwaha Om Prakash 《Journal of Artificial Intelligence and Technology》 2023年第3期100-107,共8页
Recognition of human activity based on convolutional neural network(CNN)has received the interest of researchers in recent years due to its significant improvement in accuracy.A large number of algorithms based on the... Recognition of human activity based on convolutional neural network(CNN)has received the interest of researchers in recent years due to its significant improvement in accuracy.A large number of algorithms based on the deep learning approach have been proposed for activity recognition purpose.However,with the increasing advancements in technologies having limited computational resources,it needs to design an efficient deep learning-based approaches with improved utilization of computational resources.This paper presents a simple and efficient 2-dimensional CNN(2-D CNN)architecture with very small-size convolutional kernel for human activity recognition.The merit of the proposed CNN architecture over standard deep learning architectures is fewer trainable parameters and lesser memory requirement which enables it to train the proposed CNN architecture on low GPU memory-based devices and also works well with smaller as well as larger size datasets.The proposed approach consists of mainly four stages:namely(1)creation of dataset and data augmentation,(2)designing 2-D CNN architecture,(3)the proposed 2-D CNN architecture trained from scratch up to optimum stage,and(4)evaluation of the trained 2-D CNN architecture.To illustrate the effectiveness of the proposed architecture several extensive experiments are conducted on three publicly available datasets,namely IXMAS,YouTube,and UCF101 dataset.The results of the proposed method and its comparison with other state-of-the-art methods demonstrate the usefulness of the proposed method. 展开更多
关键词 computational resources convolutional neural network GPU memory human activity recognition softmax classifier training parameters
在线阅读 下载PDF
Modified Wild Horse Optimization with Deep Learning Enabled Symmetric Human Activity Recognition Model
18
作者 Bareen Shamsaldeen Tahir Zainab Salih Ageed +1 位作者 Sheren Sadiq Hasan Subhi R.M.Zeebaree 《Computers, Materials & Continua》 SCIE EI 2023年第5期4009-4024,共16页
Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount ... Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches. 展开更多
关键词 Human activity recognition SYMMETRY deep learning machine learning pattern recognition time series classification
在线阅读 下载PDF
Parameter-Tuned Deep Learning-Enabled Activity Recognition for Disabled People
19
作者 Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第6期6287-6303,共17页
Elderly or disabled people can be supported by a human activity recognition(HAR)system that monitors their activity intervenes and pat-terns in case of changes in their behaviors or critical events have occurred.An au... Elderly or disabled people can be supported by a human activity recognition(HAR)system that monitors their activity intervenes and pat-terns in case of changes in their behaviors or critical events have occurred.An automated HAR could assist these persons to have a more indepen-dent life.Providing appropriate and accurate data regarding the activity is the most crucial computation task in the activity recognition system.With the fast development of neural networks,computing,and machine learning algorithms,HAR system based on wearable sensors has gained popularity in several areas,such as medical services,smart homes,improving human communication with computers,security systems,healthcare for the elderly,mechanization in industry,robot monitoring system,monitoring athlete train-ing,and rehabilitation systems.In this view,this study develops an improved pelican optimization with deep transfer learning enabled HAR(IPODTL-HAR)system for disabled persons.The major goal of the IPODTL-HAR method was recognizing the human activities for disabled person and improve the quality of living.The presented IPODTL-HAR model follows data pre-processing for improvising the quality of the data.Besides,EfficientNet model is applied to derive a useful set of feature vectors and the hyperparameters are adjusted by the use of Nadam optimizer.Finally,the IPO with deep belief network(DBN)model is utilized for the recognition and classification of human activities.The utilization of Nadam optimizer and IPO algorithm helps in effectually tuning the hyperparameters related to the EfficientNet and DBN models respectively.The experimental validation of the IPODTL-HAR method is tested using benchmark dataset.Extensive comparison study highlighted the betterment of the IPODTL-HAR model over recent state of art HAR approaches interms of different measures. 展开更多
关键词 Human activity recognition disabled person artificial intelligence computer vision deep learning
在线阅读 下载PDF
Device-Free Through-the-Wall Activity Recognition Using Bi-Directional Long Short-Term Memory and WiFi Channel State Information
20
作者 Zi-Yuan Gong Xiang Lu +2 位作者 Yu-Xuan Liu Huan-Huan Hou Rui Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期357-368,共12页
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev... Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field. 展开更多
关键词 activity recognition bi-directional long short-term memory(Bi-LSTM) channel state information(CSI) device-free through-the-wall.
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部