[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba lea...[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba leaves were done and the volatile components of hexane extractives of M.alba leaves with the strongest antibacterial activity were analyzed by gas chromatography-mass spectrometry(GC-MS).[Result]The results of inhibitory effect of hexane extractives of M.alba leaves on Staphylococcus aureus and Escherichia coli showed that hexane extractives of M.alba leaves collected in June,July and August had antibacterial activity against S.aureus and had no antibacterial effect against E.coli.Furthermore,hexane extractives of M.alba leaves collected in June had the strongest antibacterial activity against S.aureus(inhibition diameter 10.95 mm).The hexane extractives of M.alba leaves collected in June was analyzed by GC-MS,the main volatile components were tetradecane(16.76%),dodecane(13.20%),diisobutyl phthalate(10.26%),decane(9.10%),hexadecane(8.71%),linolenyl alcohol(7.25%),octadecane(5.88%),eicosane(3.26%),dibutyl phthalate(2.59%).[Conclusion]Linolenyl alcohol was the potential antibacterial compound.展开更多
Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron ...Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.展开更多
Objective: Exposure to certain stresses in small doses might lead to a protective effect by improving resistance to other stressors. Dead Sea (DS) minerals can be a relevant source to induce positive stress due to the...Objective: Exposure to certain stresses in small doses might lead to a protective effect by improving resistance to other stressors. Dead Sea (DS) minerals can be a relevant source to induce positive stress due to their high salinity and unique mineral combination. This concept could be further optimized using advanced unique cell biotechnology. The purpose of this study was to elucidate the innovative concept of DS minerals (water extract and black mud) supplementation in small amount to Pichia pastoris yeast growth media as a positive stress by testing the capability of accepted fermentation compounds to affect the appearance of skin. Methods: Skin equivalents were topically applied with different Pichia pastoris fermentations (Metabiotics?). Skin elasticity biomarkers were tested, since loss of elasticity and suppleness is a natural skin aging process leading to deeper wrinkles and loss of firmness. A preliminary screening at the gene level using DNA microarray was performed and subsequently, the following proteins were detected using ELISA or immunoblotting assays: elastin, fibulin-1, lysyl oxidase (LOX), metalloproteinase 3 (MMP-3), E-cadherin, claudin 4, tight junction protein (TJP)-1 and TJP-2. UVB irradiation was selected as a stressor. Results: Fermentation compounds generated in the presence of small doses of DS minerals affected the expression of various elasticity-related genes in skin. Moreover, they significantly attenuated the abnormal UVB-induced alterations, the proteins elastin, fibulin-1, LOX, MMP-3, E-cadherin and TJP-2. Conclusions: The observations clearly demonstrate that when DS Metabiotics? compounds are topically applied, significant alterations in several biomarkers that contribute to skin elasticity occur. Thus, these novel compounds have the potential to serve as skincare actives.展开更多
Crude extracts of Alpinia conchigera a species from the Malaysian Ginger (Zingiberaceae) family and its fractions obtained from various extraction methods were assayed for melanogenesis inhibition activity and cell vi...Crude extracts of Alpinia conchigera a species from the Malaysian Ginger (Zingiberaceae) family and its fractions obtained from various extraction methods were assayed for melanogenesis inhibition activity and cell viability. The crude extract obtained from the ethanolic extraction and the super critical fluid extraction did not exhibit significant melanin inhibition activity and was shown to be toxic to the melanocyte cells in comparison to the water extract. The crude aqueous extracts displayed melanin inhibition of 96.38 ± 1.60% and cell viability 109.90 ± 8.32% at a concentration of 500 μg/mL. Bioassay guided fractionation was performed on the water extracts to isolate the active compounds. The actives were identified as trans-cinnamaldehyde and chavicol glucopyranoside with both compound showing potent anti-melanogenesis activity. At 4.9 μg/ml, both trans-cinnamaldehyde and chavicol glucopyranoside gave 85% inhibition of melanin formation in vitro with 77% and 97% cell viability respectively. In comparison, kojic acid, a known skin lightening agent showed 90.0% inhibition at 100 μg/mL. The bioactive composition comprising the extract, active fraction, purified compounds or mixture thereof of Alpinia conchigera may be used for cosmetic and pharmaceutical applications, particularly for the purposes of reducing skin pigmentation.展开更多
Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions thro...Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions through methanotrophs can provide crucial information for understanding the harsh C-H activation of methane.Soluble methane monooxygenase(sMMO)belongs to the bacterial multi-component monooxygenase superfamily and requires hydroxylase(MMOH),regulatory(MMOB),and reductase(MMOR)components.Recent structural and biophysical studies have demonstrated that these components accelerate and retard methane hydroxylation in MMOH through protein-protein interactions.Complex structures of sMMO,including MMOH-MMOB and MMOH-MMOD,illustrate how these regulatory and inhibitory components orchestrate the di-iron active sites located within the four-helix bundles of MMOH,specifically at the docking surface known as the canyon region.In addition,recent biophysical studies have demonstrated the role of MmoR,aσ54-dependent transcriptional regulator,in regulating sMMO expression.This perspective article introduces remarkable discoveries in recent reports on sMMO components that are crucial for understanding sMMO expression and activities.Our findings provide insight into how sMMO components interact with MMOH to control methane hydroxylation,shedding light on the mechanisms governing sMMO expression and the interactions between activating enzymes and promoters.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding micro...Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding microglia,the CNS’s innate immune cells,beyond the conventional conflation of“neuroinflammation”and“microglial activation.”This conflation has clouded the true complexity of these processes,potentially stalling scientific progress and the development of new therapies.We challenge the long-standing perspectives that have oversimplified these interactions,advocating for a deeper exploration of the dynamic relationship between neuroinflammation and microglial activation.By dissecting specific molecular pathways,we aim to illuminate their elaborate roles in neuroinflammatory responses,especially in the context of Alzheimer’s disease(AD).Here,neuroinflammation is not merely a passive observer or a direct antagonist but a complex agent in the disease’s progression.This article calls for a significant paradigm shift towards an integrative,multi-omics approach to neuroimmunology.Adopting such a comprehensive framework is crucial for advancing our understanding of neuroinflammatory conditions and paving the way for targeted therapeutic strategies for brain diseases.展开更多
Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostas...Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.展开更多
Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain tha...Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain that significantly affects the quality of life of afflicted women.The present perspective paper examines the role of spinal sensitization and microglial activation in vulvodynia.展开更多
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as...Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ...Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.展开更多
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st...Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.展开更多
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
BACKGROUND Treating diabetes in dialysis patients remains a challenge,with many hypoglycemic drugs requiring dose adjustments or avoidance in these patients.CASE SUMMARY This report describes an 83-year-old female pat...BACKGROUND Treating diabetes in dialysis patients remains a challenge,with many hypoglycemic drugs requiring dose adjustments or avoidance in these patients.CASE SUMMARY This report describes an 83-year-old female patient with a 30-year history of type 2 diabetes(T2DM)who had struggled to control her blood sugar for more than a year.She had a history of high blood pressure for 30 years,had undergone continuous ambulatory peritoneal dialysis for more than two years,was 163 cm tall,weighed 77 kg,and had a body mass index of 28.98 kg/m2.Despite intensive insulin therapy at a daily dose of 150 units,adding Dorzagliatin at a dosage of 75 mg orally twice daily led to immediate blood sugar improvement and a gradual reduction in insulin dosage.After one month of follow-up,the fasting plasma glucose was 6-8 mmol/L,and the 2-hour postprandial glucose was 8-12 mmol/L.CONCLUSION To our knowledge,this report is the first to use Dorzagliatin to treat type 2 diabetes peritoneal dialysis patients with challenging glucose control.Dorzagliatin,a novel glucokinase activator primarily metabolized by the liver,exhibits no pharmacokinetic differences among patients with varying degrees of chronic kidney disease.It has a high plasma protein binding rate and may not be cleared by peritoneal dialysis,potentially offering a new glycemic control option for Type 2 diabetic patients on peritoneal dialysis.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interfe...Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.展开更多
基金Supported by the Forestry Department of Heilongjiang Province Science and Technology Promotion Project(01043208003)the Project of Science and Technology Department of Heilongjiang Province(LC07C27)~~
文摘[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba leaves were done and the volatile components of hexane extractives of M.alba leaves with the strongest antibacterial activity were analyzed by gas chromatography-mass spectrometry(GC-MS).[Result]The results of inhibitory effect of hexane extractives of M.alba leaves on Staphylococcus aureus and Escherichia coli showed that hexane extractives of M.alba leaves collected in June,July and August had antibacterial activity against S.aureus and had no antibacterial effect against E.coli.Furthermore,hexane extractives of M.alba leaves collected in June had the strongest antibacterial activity against S.aureus(inhibition diameter 10.95 mm).The hexane extractives of M.alba leaves collected in June was analyzed by GC-MS,the main volatile components were tetradecane(16.76%),dodecane(13.20%),diisobutyl phthalate(10.26%),decane(9.10%),hexadecane(8.71%),linolenyl alcohol(7.25%),octadecane(5.88%),eicosane(3.26%),dibutyl phthalate(2.59%).[Conclusion]Linolenyl alcohol was the potential antibacterial compound.
基金supported by Hubei Science and Technology Plan Key Project(G2019ABA100).
文摘Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.
文摘Objective: Exposure to certain stresses in small doses might lead to a protective effect by improving resistance to other stressors. Dead Sea (DS) minerals can be a relevant source to induce positive stress due to their high salinity and unique mineral combination. This concept could be further optimized using advanced unique cell biotechnology. The purpose of this study was to elucidate the innovative concept of DS minerals (water extract and black mud) supplementation in small amount to Pichia pastoris yeast growth media as a positive stress by testing the capability of accepted fermentation compounds to affect the appearance of skin. Methods: Skin equivalents were topically applied with different Pichia pastoris fermentations (Metabiotics?). Skin elasticity biomarkers were tested, since loss of elasticity and suppleness is a natural skin aging process leading to deeper wrinkles and loss of firmness. A preliminary screening at the gene level using DNA microarray was performed and subsequently, the following proteins were detected using ELISA or immunoblotting assays: elastin, fibulin-1, lysyl oxidase (LOX), metalloproteinase 3 (MMP-3), E-cadherin, claudin 4, tight junction protein (TJP)-1 and TJP-2. UVB irradiation was selected as a stressor. Results: Fermentation compounds generated in the presence of small doses of DS minerals affected the expression of various elasticity-related genes in skin. Moreover, they significantly attenuated the abnormal UVB-induced alterations, the proteins elastin, fibulin-1, LOX, MMP-3, E-cadherin and TJP-2. Conclusions: The observations clearly demonstrate that when DS Metabiotics? compounds are topically applied, significant alterations in several biomarkers that contribute to skin elasticity occur. Thus, these novel compounds have the potential to serve as skincare actives.
文摘Crude extracts of Alpinia conchigera a species from the Malaysian Ginger (Zingiberaceae) family and its fractions obtained from various extraction methods were assayed for melanogenesis inhibition activity and cell viability. The crude extract obtained from the ethanolic extraction and the super critical fluid extraction did not exhibit significant melanin inhibition activity and was shown to be toxic to the melanocyte cells in comparison to the water extract. The crude aqueous extracts displayed melanin inhibition of 96.38 ± 1.60% and cell viability 109.90 ± 8.32% at a concentration of 500 μg/mL. Bioassay guided fractionation was performed on the water extracts to isolate the active compounds. The actives were identified as trans-cinnamaldehyde and chavicol glucopyranoside with both compound showing potent anti-melanogenesis activity. At 4.9 μg/ml, both trans-cinnamaldehyde and chavicol glucopyranoside gave 85% inhibition of melanin formation in vitro with 77% and 97% cell viability respectively. In comparison, kojic acid, a known skin lightening agent showed 90.0% inhibition at 100 μg/mL. The bioactive composition comprising the extract, active fraction, purified compounds or mixture thereof of Alpinia conchigera may be used for cosmetic and pharmaceutical applications, particularly for the purposes of reducing skin pigmentation.
文摘Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions through methanotrophs can provide crucial information for understanding the harsh C-H activation of methane.Soluble methane monooxygenase(sMMO)belongs to the bacterial multi-component monooxygenase superfamily and requires hydroxylase(MMOH),regulatory(MMOB),and reductase(MMOR)components.Recent structural and biophysical studies have demonstrated that these components accelerate and retard methane hydroxylation in MMOH through protein-protein interactions.Complex structures of sMMO,including MMOH-MMOB and MMOH-MMOD,illustrate how these regulatory and inhibitory components orchestrate the di-iron active sites located within the four-helix bundles of MMOH,specifically at the docking surface known as the canyon region.In addition,recent biophysical studies have demonstrated the role of MmoR,aσ54-dependent transcriptional regulator,in regulating sMMO expression.This perspective article introduces remarkable discoveries in recent reports on sMMO components that are crucial for understanding sMMO expression and activities.Our findings provide insight into how sMMO components interact with MMOH to control methane hydroxylation,shedding light on the mechanisms governing sMMO expression and the interactions between activating enzymes and promoters.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金funded by Portuguese funds through FCT——Funda??o para a Ciência e a Tecnologia/Ministério da Ciência,Tecnologia e Ensino Superior in the framework of the project PTDC/MEDNEU/1677/2021(to JBR)。
文摘Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding microglia,the CNS’s innate immune cells,beyond the conventional conflation of“neuroinflammation”and“microglial activation.”This conflation has clouded the true complexity of these processes,potentially stalling scientific progress and the development of new therapies.We challenge the long-standing perspectives that have oversimplified these interactions,advocating for a deeper exploration of the dynamic relationship between neuroinflammation and microglial activation.By dissecting specific molecular pathways,we aim to illuminate their elaborate roles in neuroinflammatory responses,especially in the context of Alzheimer’s disease(AD).Here,neuroinflammation is not merely a passive observer or a direct antagonist but a complex agent in the disease’s progression.This article calls for a significant paradigm shift towards an integrative,multi-omics approach to neuroimmunology.Adopting such a comprehensive framework is crucial for advancing our understanding of neuroinflammatory conditions and paving the way for targeted therapeutic strategies for brain diseases.
文摘Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.
文摘Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain that significantly affects the quality of life of afflicted women.The present perspective paper examines the role of spinal sensitization and microglial activation in vulvodynia.
基金Supported by Yunnan Major Scientific and Technological Projects(No.202403AA080001)National Natural Science Foundation of China(No.52074137)Yunnan Fundamental Research Projects(No.202201AT070151)。
文摘Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(No.22471103,22425105,22201111,21931001,22221001,and 22271124)+5 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027)as well as the National Natural Science Foundation of Gansu Province(22JR5RA470)the Fundamental Research Funds for the Central Universities(lzujbky-2023-eyt03)supported by the Agency for Science,Technology and Research(A*STAR)MTC Individual Research Grants(IRG)M22K2c0078.
文摘Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
文摘Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.
基金supported by the National Natural Science Foundation of China (42388101)the CAS Youth Interdisciplinary Team (JCTD-2021-05)funded by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.
文摘BACKGROUND Treating diabetes in dialysis patients remains a challenge,with many hypoglycemic drugs requiring dose adjustments or avoidance in these patients.CASE SUMMARY This report describes an 83-year-old female patient with a 30-year history of type 2 diabetes(T2DM)who had struggled to control her blood sugar for more than a year.She had a history of high blood pressure for 30 years,had undergone continuous ambulatory peritoneal dialysis for more than two years,was 163 cm tall,weighed 77 kg,and had a body mass index of 28.98 kg/m2.Despite intensive insulin therapy at a daily dose of 150 units,adding Dorzagliatin at a dosage of 75 mg orally twice daily led to immediate blood sugar improvement and a gradual reduction in insulin dosage.After one month of follow-up,the fasting plasma glucose was 6-8 mmol/L,and the 2-hour postprandial glucose was 8-12 mmol/L.CONCLUSION To our knowledge,this report is the first to use Dorzagliatin to treat type 2 diabetes peritoneal dialysis patients with challenging glucose control.Dorzagliatin,a novel glucokinase activator primarily metabolized by the liver,exhibits no pharmacokinetic differences among patients with varying degrees of chronic kidney disease.It has a high plasma protein binding rate and may not be cleared by peritoneal dialysis,potentially offering a new glycemic control option for Type 2 diabetic patients on peritoneal dialysis.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
文摘Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.