A convergent approach to 1,5-hydroxy ketones,the general precursors for constructing the C ring of bryostatins,has been developed via a Zn/Cu-promoted conjugate addition of a-hydroxy iodides with enones.The reaction l...A convergent approach to 1,5-hydroxy ketones,the general precursors for constructing the C ring of bryostatins,has been developed via a Zn/Cu-promoted conjugate addition of a-hydroxy iodides with enones.The reaction leads to direct formation of the C21-C22 bond and tolerates diverse functionalities at the C17-,C18-and C24-positions.The approach also enables a more concise synthesis of the known C ring intermediate(10 longest linear steps and 14 total steps),in contrast to its previous synthesis(17 longest linear steps and 22 total steps) in our total synthesis of bryostatin 8.展开更多
Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil...Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.展开更多
Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corr...Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corrosion behavior of the as-cast Mg−7Sn−1Zn−1Y(TZW711)alloy after solution treatment(T4)and aging treatment(T6).The results show that the T4-TZW711 alloy possesses the highest corrosion resistance in the early corrosion stage.This is because the dissolution of Mg2Sn reduces the cathodic current density and increases the charge transfer resistance(Rct).When the corrosion time is prolonged,the undissolved and clustered MgSnY phase will peel off from the T4-TZW711 alloy surface,thereby increasing the corrosion rate of the alloy.After aging treatment,the undissolved MgSnY phase is dispersed,which results in a lower localized corrosion sensitivity of T6-TZW711 alloy than that of the T4-TZW711 alloy,suggesting that the T6 treatment can enhance the corrosion resistance of Mg−7Sn−1Zn−1Y alloys.展开更多
High-temperature and short-time(HTST)solution heat treatment combined with non-isothermal aging(NIA)was employed to regulate the microstructure and properties of Al−4.5Mg−2.0Zn−0.3Ag alloy.Results indicate that HTST s...High-temperature and short-time(HTST)solution heat treatment combined with non-isothermal aging(NIA)was employed to regulate the microstructure and properties of Al−4.5Mg−2.0Zn−0.3Ag alloy.Results indicate that HTST solution heat treatment can not only retain partial deformation dislocations,but inhibit the recrystallization behavior and increase the proportion of low-angle grain boundaries(LAGBs).In the subsequent NIA process,HTST solution heat treatment combined with NIA is instrumental in restraining the degradation of dislocations and promoting precipitation of nano-scale T'-Mg_(32)(Al,Zn,Ag)49 phase,which improves the strength of the alloy greatly.In addition,a higher fraction of LAGBs and the discontinuous distribution of grain boundary precipitates caused by this novel technology meliorate the corrosion resistance of Al−4.5Mg−2.0Zn−0.3Ag alloy.展开更多
Rechargeable aqueous zinc-metal batteries (AZMBs) are promising candidates for large-scale energy storage systems due to their low cost and high safety.However,their performance and sustainability are significantly hi...Rechargeable aqueous zinc-metal batteries (AZMBs) are promising candidates for large-scale energy storage systems due to their low cost and high safety.However,their performance and sustainability are significantly hindered by the sluggish desolvation kinetics at the electrode/electrolyte interface and the corresponding hydrogen evolution reaction where active water molecules tightly participate in the Zn(H_(2)O)_(6)^(2+)solvation shell.Herein,learnt from self-generated solid electrolyte interphase (SEI) in anodes,the dielectric but ion-conductive zinc niobate nanoparticles artificial layer is constructed on metallic Zn surface (ZNB@Zn),acting as a rapid desolvation promotor.The zincophilic and dielectric-conductive properties of ZNB layer accelerate interfacial desolvation/diffusion and suppress surface corrosion or dendrite formation,achieving uniform Zn plating/stripping behavior,as confirmed by electronic/optical microscopies and interface spectroscopical measurements together with theoretical calculations.Consequently,the as-prepared ZNB@Zn electrode exhibits excellent cycling stability of over 2000 h and robust reversibility (99.54%) even under high current density and depth of discharge conditions.Meanwhile,the assembled ZNB@Zn-based full cell displays high capacity-retention rate of 80.21%after 3000 cycles at 5 A g^(-1)and outstanding rate performance up to 10 A g^(-1).The large-areal pouch cell is stabilized for hundreds of cycles,highlighting the bright prospects of the dielectric but ion-conductive layer in further application of AZMBs.展开更多
基金the financial support from the National Natural Science Foundation of China(No.21921002)the NationalScience and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China(No.2018ZX09711001-005-004)the Fundamental Research Funds for the Central Universities(No.2012017yjsy210)。
文摘A convergent approach to 1,5-hydroxy ketones,the general precursors for constructing the C ring of bryostatins,has been developed via a Zn/Cu-promoted conjugate addition of a-hydroxy iodides with enones.The reaction leads to direct formation of the C21-C22 bond and tolerates diverse functionalities at the C17-,C18-and C24-positions.The approach also enables a more concise synthesis of the known C ring intermediate(10 longest linear steps and 14 total steps),in contrast to its previous synthesis(17 longest linear steps and 22 total steps) in our total synthesis of bryostatin 8.
文摘Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.
基金National Natural Science Foundation of China(Nos.52301041,52022017,52065009,52371005)Special Fund for Special Posts of Guizhou University,China(No.[2023]26)+1 种基金Science and Technology Planning Project of Guizhou Province,China(No.ZK2021269)Fundamental Research Funds for the Central Universities,China(No.DUT23YG104)。
文摘Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corrosion behavior of the as-cast Mg−7Sn−1Zn−1Y(TZW711)alloy after solution treatment(T4)and aging treatment(T6).The results show that the T4-TZW711 alloy possesses the highest corrosion resistance in the early corrosion stage.This is because the dissolution of Mg2Sn reduces the cathodic current density and increases the charge transfer resistance(Rct).When the corrosion time is prolonged,the undissolved and clustered MgSnY phase will peel off from the T4-TZW711 alloy surface,thereby increasing the corrosion rate of the alloy.After aging treatment,the undissolved MgSnY phase is dispersed,which results in a lower localized corrosion sensitivity of T6-TZW711 alloy than that of the T4-TZW711 alloy,suggesting that the T6 treatment can enhance the corrosion resistance of Mg−7Sn−1Zn−1Y alloys.
基金National Natural Science Foundation of China(Nos.52204400,52204401)Natural Science Foundation of Hebei Province,China(No.E2022203033)。
文摘High-temperature and short-time(HTST)solution heat treatment combined with non-isothermal aging(NIA)was employed to regulate the microstructure and properties of Al−4.5Mg−2.0Zn−0.3Ag alloy.Results indicate that HTST solution heat treatment can not only retain partial deformation dislocations,but inhibit the recrystallization behavior and increase the proportion of low-angle grain boundaries(LAGBs).In the subsequent NIA process,HTST solution heat treatment combined with NIA is instrumental in restraining the degradation of dislocations and promoting precipitation of nano-scale T'-Mg_(32)(Al,Zn,Ag)49 phase,which improves the strength of the alloy greatly.In addition,a higher fraction of LAGBs and the discontinuous distribution of grain boundary precipitates caused by this novel technology meliorate the corrosion resistance of Al−4.5Mg−2.0Zn−0.3Ag alloy.
基金National Key R&D Program of China (2021YFA1201503)National Natural Science Foundation of China (21972164, 22279161, 12264038, 22309144)+4 种基金Natural Science Foundation of Jiangsu Province (BK. 20210130)China Postdoctoral Science Foundation (2023M733189)Jiangsu Double-Innovation PhD Program in 2022 (JSSCBS20221241)Senior Talents Fund of Jiangsu University (5501220014)fellowship funding provided by the Alexander von Humboldt Foundation。
文摘Rechargeable aqueous zinc-metal batteries (AZMBs) are promising candidates for large-scale energy storage systems due to their low cost and high safety.However,their performance and sustainability are significantly hindered by the sluggish desolvation kinetics at the electrode/electrolyte interface and the corresponding hydrogen evolution reaction where active water molecules tightly participate in the Zn(H_(2)O)_(6)^(2+)solvation shell.Herein,learnt from self-generated solid electrolyte interphase (SEI) in anodes,the dielectric but ion-conductive zinc niobate nanoparticles artificial layer is constructed on metallic Zn surface (ZNB@Zn),acting as a rapid desolvation promotor.The zincophilic and dielectric-conductive properties of ZNB layer accelerate interfacial desolvation/diffusion and suppress surface corrosion or dendrite formation,achieving uniform Zn plating/stripping behavior,as confirmed by electronic/optical microscopies and interface spectroscopical measurements together with theoretical calculations.Consequently,the as-prepared ZNB@Zn electrode exhibits excellent cycling stability of over 2000 h and robust reversibility (99.54%) even under high current density and depth of discharge conditions.Meanwhile,the assembled ZNB@Zn-based full cell displays high capacity-retention rate of 80.21%after 3000 cycles at 5 A g^(-1)and outstanding rate performance up to 10 A g^(-1).The large-areal pouch cell is stabilized for hundreds of cycles,highlighting the bright prospects of the dielectric but ion-conductive layer in further application of AZMBs.