期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力机制和能量函数的动作识别算法
1
作者 王丽芳 吴荆双 +1 位作者 尹鹏亮 胡立华 《计算机应用》 北大核心 2025年第1期234-239,共6页
针对零样本动作识别(ZSAR)算法的框架缺乏结构性指导的问题,以基于能量的模型(EBM)指导框架设计,提出基于注意力机制和能量函数的动作识别算法(ARAAE)。首先,为了得到EBM的输入,设计了光流加3D卷积(C3D)架构的组合以提取视觉特征,从而... 针对零样本动作识别(ZSAR)算法的框架缺乏结构性指导的问题,以基于能量的模型(EBM)指导框架设计,提出基于注意力机制和能量函数的动作识别算法(ARAAE)。首先,为了得到EBM的输入,设计了光流加3D卷积(C3D)架构的组合以提取视觉特征,从而达到空间去冗余的效果;其次,将视觉Transformer(ViT)用于视觉特征的提取以减少时间冗余,同时利用ViT配合光流加C3D架构的组合以减少空间冗余,从而获得非冗余视觉空间;最后,为度量视觉空间和语义空间的相关性,实现能量评分评估机制,设计联合损失函数来进行优化实验。采用6个经典ZSAR算法及近年文献里的算法在两个数据集HMDB51和UCF101进行实验的结果表明:相较于CAGE(Coupling Adversarial Graph Embedding)、Bi-dir GAN(Bi-directional Generative Adversarial Network)和ETSAN(Energy-based Temporal Summarized Attentive Network)等算法,在平均分组的HMDB51数据集上,ARAAE平均识别准确率提升至(22.1±1.8)%,均明显优于对比算法;在平均分组的UCF101数据集上,ARAAE的平均识别准确率提升至(22.4±1.6)%,略优于对比算法;在以81/20为分割方式的UCF101数据集上,ARAAE的平均识别准确率提升至(40.2±2.6)%,均大于对比算法。可见,ARAAE在ZSAR中能有效提高识别性能。 展开更多
关键词 零样本动作识别 能量函数 注意力机制 光流法 视觉特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部