A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR...A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR, NH_3-TPD, and BET analyses. The catalytic property of the samples toward the methanol-to-olefin(MTO) reaction was evaluated in a connected in series two-stage unit equipped with a continuous flow(once-through) fixed-bed tubular reactor similar to an industrial reactor. The first reactor mainly converted methanol into dimethyl ether and water, followed by being subject to continuous reaction in the second reactor, in which DME was converted to hydrocarbons. The composites exhibited the typical framework topology of MFI, AEI and AFI, which represented the ZSM-5 zeolite, the molecular sieves AlPO-18 or SAPO-18, AlPO-5 or SAPO-5, respectively. The composites showed several advantages for optimizing the zeolite acidity, enhancing the mass transfer, and restraining the side reactions. Catalytic reaction results showed that the composites exhibited higher selectivity to light olefins(84.0%) and lower selectivity to C_2―C_4 alkanes and C_5^+ hydrocarbons than pure ZSM-5. Moreover, the composite zeolite loaded with 3% of P demonstrated improved catalytic activity and stability for the conversion of methanol to propylene, because the coking rate was obviously suppressed.展开更多
To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the compo...To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the composite molecular sieves were optimized and the optimal ZSM-22/SAPO-11 composite(ZS-9)was obtained.The electrostatic repulsions between the ZSM-22 precursors and the SAPO-11 crystalline nuclei produced small ZSM-22 and SAPO-11 crystallites in ZS-9,which increased the specific surface area and mesopore volume and thereby exposed more acid sites.In comparison with conventional SAPO-11,ZSM-22 and their mechanical mixture,ZS-9 with smaller crystallites and the optimal medium and strong Brønsted acid centers(MSBAC)content displayed a higher yield of branched C_(10) isomers(81.6%),lower cracking selectivity(11.9%)and excellent stability.The correlation between the i-C_(10) selectivity and the MSBAC density of molecular sieves indicated that the selectivity for branched C_(10) isomers first increased and then decreased with increasing MSBAC density on the molecular sieves,and the maximum selectivity(87.7%)occurred with a density of 9.6×10^(−2)μmol m^(−2).展开更多
The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catal...The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catalytic behavior of resulting catalyst for xylene isomerization,propylene aromatization and toluene disproportionation is better than that of HZSM—5 zeolite.展开更多
This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure...This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.展开更多
ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve...ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.展开更多
A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The cataly...A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.展开更多
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i...The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.展开更多
Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propy...Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.展开更多
This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized...This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.展开更多
For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD ...For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD (X-ray diffraction) characterization indicates that the relative crystallinity of the composite zeolites decreases with the increase in Si/Al ratio after steaming. N2 adsorption-desorption suggests that more mesopores are formed while the BET (Brunauer, Emmett and Teller) specific surface area and the micropore specific surface area decrease as the temperature of steaming rises. Daqing heavy oil was used as feedstock to test the catalytic cracking activity of ZSM-5/Y composite zeolites. The experimental results of the catalytic cracking performance reveal that the distribution of products differs due to the different conditions of hydrothermal treatment. Further hydrothermal treatment leads to an increase in the yield of light oil, and a decrease in the yield of gas products and coke.展开更多
In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composite...In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composites by an in-situ crystallization technique were investigated.The effects of the intercalation ratios and de-intercalation rate and the amounts of added kaolin/urea intercalation composite on the synthesis of the catalysis composites containing the ZSM-5 molecular sieve were studied.The samples were characterized by X-ray diffraction,FT-IR,TG-DTA,N2 adsorption-desorption,and SEM,respectively.The results showed that the structure of the samples prepared by kaolin/urea intercalation composite was pure ZSM-5 molecular sieve.The crystallinity of ZSM-5 molecular sieve increased at first and then decreased with the increase of intercalation ratio of kaolin/urea intercalation composite.When the intercalation ratio was 62%,the crystallinity of ZSM-5 molecular sieve was lower.When the amount of added kaolin/urea intercalation composite with an intercalation ratio of 22%was 3%,the crystallinity of ZSM-5 zeolite was improved to reach 65%.Compared to the crystallization product formed without adding kaolin/urea intercalation composite,the crystallinity of ZSM-5 molecular sieve has increased by 54.8%.The catalytic composites containing ZSM-5 molecular sieve had better thermal stability with a wide pore structure,featuring a particle diameter of about 2.5μm,a BET specific surface area of 236 m^2/g,and a pore size of 10.6 nm.展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of ...Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of these catalysts were characterized by X-Ray Diffraction (XRD), N2 absorption-desorption, Pyridine-Fourier Transform Infrared (Py-FTIR), Transmission Electron Microscopy (TEM), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM) and NH3- Temperature Programmed Desorption (NH3-TPD), and the performance of these catalysts in n-dodecane hydroisomerization was evaluated in a continuous down-flow fixed bed with a stainless steel tubular reactor. The characterization results indicated that the intergrowth zeolite ZSM-22/ZSM-23 possessed the dual structure of ZSM-22 and ZSM-23, and the catalyst Pt/ZSM-22/ZSM-23 had similar pores and weak acidity to Pt/ZSM-22 and Pt/ZSM-23 catalysts. Moreover, Pt/ZSM-22/ZSM-23 catalyst showed a high selectivity in hydroisomerization of long chain n-alkanes to mono-branched isomers. The evaluation results for n-dodecane hydroisomerization indicated that the activity of Pt/ZSM-22/ZSM-23 was the lowest, while the hydroisomerization selectivity was the highest among the three catalysts. The maximum yield of i-dodecane product was 68.3% over Pt/ZSM-22/ZSM-23 at 320 ℃.展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that th...Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.展开更多
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydr...PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.展开更多
基金financially supported by the National International Cooperation S & T Project of China (No.2015DFA40660)
文摘A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR, NH_3-TPD, and BET analyses. The catalytic property of the samples toward the methanol-to-olefin(MTO) reaction was evaluated in a connected in series two-stage unit equipped with a continuous flow(once-through) fixed-bed tubular reactor similar to an industrial reactor. The first reactor mainly converted methanol into dimethyl ether and water, followed by being subject to continuous reaction in the second reactor, in which DME was converted to hydrocarbons. The composites exhibited the typical framework topology of MFI, AEI and AFI, which represented the ZSM-5 zeolite, the molecular sieves AlPO-18 or SAPO-18, AlPO-5 or SAPO-5, respectively. The composites showed several advantages for optimizing the zeolite acidity, enhancing the mass transfer, and restraining the side reactions. Catalytic reaction results showed that the composites exhibited higher selectivity to light olefins(84.0%) and lower selectivity to C_2―C_4 alkanes and C_5^+ hydrocarbons than pure ZSM-5. Moreover, the composite zeolite loaded with 3% of P demonstrated improved catalytic activity and stability for the conversion of methanol to propylene, because the coking rate was obviously suppressed.
基金The authors gratefully acknowledge the financial support of Science Foundation of China University of Petroleum,Beijing(Grant No.KYJJ2012-03-03).
文摘To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the composite molecular sieves were optimized and the optimal ZSM-22/SAPO-11 composite(ZS-9)was obtained.The electrostatic repulsions between the ZSM-22 precursors and the SAPO-11 crystalline nuclei produced small ZSM-22 and SAPO-11 crystallites in ZS-9,which increased the specific surface area and mesopore volume and thereby exposed more acid sites.In comparison with conventional SAPO-11,ZSM-22 and their mechanical mixture,ZS-9 with smaller crystallites and the optimal medium and strong Brønsted acid centers(MSBAC)content displayed a higher yield of branched C_(10) isomers(81.6%),lower cracking selectivity(11.9%)and excellent stability.The correlation between the i-C_(10) selectivity and the MSBAC density of molecular sieves indicated that the selectivity for branched C_(10) isomers first increased and then decreased with increasing MSBAC density on the molecular sieves,and the maximum selectivity(87.7%)occurred with a density of 9.6×10^(−2)μmol m^(−2).
文摘The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catalytic behavior of resulting catalyst for xylene isomerization,propylene aromatization and toluene disproportionation is better than that of HZSM—5 zeolite.
基金the financial support by the National Natural Science Foundation of China (No. 20973022 and No. 11472048)
文摘This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.
文摘ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.
基金Supported by the National Natural Science Foundation of China(21476244,21406245)Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21030600)the Youth Innovation Promotion Association CAS(2016046)
文摘A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.
基金National Natural Science Foundation of China(21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.
基金Supported by the Ministry of Science and Technology of China Through the National Basic Research Program (2010CB226905)the National Natural Science Foundation of China for the Youth (20706059)
文摘Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.
基金The financial supported by Nakhon Ratchasima Rajabhat University,Nakhon Ratchasimathe National Research Council of Thailand+3 种基金Center of Excellence for Innovation in Chemistry (PERCH-CIC)Office of the Higher Education CommissionMinistry of Education and Materials Chemistry Research CenterDepartment of Chemistry Faculty of Science,Khon Kaen University,Thailand
文摘This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.
文摘For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD (X-ray diffraction) characterization indicates that the relative crystallinity of the composite zeolites decreases with the increase in Si/Al ratio after steaming. N2 adsorption-desorption suggests that more mesopores are formed while the BET (Brunauer, Emmett and Teller) specific surface area and the micropore specific surface area decrease as the temperature of steaming rises. Daqing heavy oil was used as feedstock to test the catalytic cracking activity of ZSM-5/Y composite zeolites. The experimental results of the catalytic cracking performance reveal that the distribution of products differs due to the different conditions of hydrothermal treatment. Further hydrothermal treatment leads to an increase in the yield of light oil, and a decrease in the yield of gas products and coke.
基金This work was financially supported by the National Natural Science Foundation of China(No.21371055)the Key Project of Scientific Research Project of Hunan Education Department(No.18A313).
文摘In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composites by an in-situ crystallization technique were investigated.The effects of the intercalation ratios and de-intercalation rate and the amounts of added kaolin/urea intercalation composite on the synthesis of the catalysis composites containing the ZSM-5 molecular sieve were studied.The samples were characterized by X-ray diffraction,FT-IR,TG-DTA,N2 adsorption-desorption,and SEM,respectively.The results showed that the structure of the samples prepared by kaolin/urea intercalation composite was pure ZSM-5 molecular sieve.The crystallinity of ZSM-5 molecular sieve increased at first and then decreased with the increase of intercalation ratio of kaolin/urea intercalation composite.When the intercalation ratio was 62%,the crystallinity of ZSM-5 molecular sieve was lower.When the amount of added kaolin/urea intercalation composite with an intercalation ratio of 22%was 3%,the crystallinity of ZSM-5 zeolite was improved to reach 65%.Compared to the crystallization product formed without adding kaolin/urea intercalation composite,the crystallinity of ZSM-5 molecular sieve has increased by 54.8%.The catalytic composites containing ZSM-5 molecular sieve had better thermal stability with a wide pore structure,featuring a particle diameter of about 2.5μm,a BET specific surface area of 236 m^2/g,and a pore size of 10.6 nm.
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金the financial supports form Petrochina(050508-04-02)the National Natural Science Foundation of China(No.21073235,and 20833011)
文摘Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of these catalysts were characterized by X-Ray Diffraction (XRD), N2 absorption-desorption, Pyridine-Fourier Transform Infrared (Py-FTIR), Transmission Electron Microscopy (TEM), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM) and NH3- Temperature Programmed Desorption (NH3-TPD), and the performance of these catalysts in n-dodecane hydroisomerization was evaluated in a continuous down-flow fixed bed with a stainless steel tubular reactor. The characterization results indicated that the intergrowth zeolite ZSM-22/ZSM-23 possessed the dual structure of ZSM-22 and ZSM-23, and the catalyst Pt/ZSM-22/ZSM-23 had similar pores and weak acidity to Pt/ZSM-22 and Pt/ZSM-23 catalysts. Moreover, Pt/ZSM-22/ZSM-23 catalyst showed a high selectivity in hydroisomerization of long chain n-alkanes to mono-branched isomers. The evaluation results for n-dodecane hydroisomerization indicated that the activity of Pt/ZSM-22/ZSM-23 was the lowest, while the hydroisomerization selectivity was the highest among the three catalysts. The maximum yield of i-dodecane product was 68.3% over Pt/ZSM-22/ZSM-23 at 320 ℃.
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
基金financial supports by National Key R&D Program of China(Grant No.2017YFB0306702)are gratefully acknowledged。
文摘Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
基金supports provided by the Production and Research Prospective Joint Research Project (BY2009153)the Science and Technology Support Program (BE2008129)of jiansu Province of chinathe National Natural Science Foundation of China(50873026)
文摘PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.