This paper presents a new elasticity and finite element formulation for different Young's modulus when tension and compression loadings in anisotropy media. The case studies, such as anisotropy and isotropy, were ...This paper presents a new elasticity and finite element formulation for different Young's modulus when tension and compression loadings in anisotropy media. The case studies, such as anisotropy and isotropy, were investigated. A numerical example was shown to find out the changes of neutral axis at the pure bending beams.展开更多
In the present paper,the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models.Aluminum film and two kinds of substrates,i.e.glass and si...In the present paper,the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models.Aluminum film and two kinds of substrates,i.e.glass and silicon,are studied.Nanoindentation XP Ⅱ and continuous stiffness mode are used during the experiments.In order to avoid the influence of the Oliver and Pharr method used in the experiments,the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption.The volume fraction model(CZ model)proposed by Fabes et al.(1992)is used and modified to analyze the measured hardness.The method proposed by Doerner and Nix(DN formula)(1986)is modified to analyze the measured Young's modulus.Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature,which include the results of two kinds of systems,i.e.,a soft film on a hard substrate and a hard film on a soft substrate.In the modified CZ model,the indentation influence angle,(?), is considered as a relevant physical parameter,which embodies the effects of the indenter tip radius, pile-up or sink-in phenomena and deformation of film and substrate.展开更多
The correlation between Young's modulus of mica-filled high density polyethylene (HDPE), low density polyethylene(LDPE) and the state of dispersion of plasma-treated mica in the polymer matrices was studied. The m...The correlation between Young's modulus of mica-filled high density polyethylene (HDPE), low density polyethylene(LDPE) and the state of dispersion of plasma-treated mica in the polymer matrices was studied. The modulus and the number average diameter of mica aggregates in matrix were determined with tensile testing and image analysis respectively. The interface structure of the filler/matrix and the bulk structure of matrix were examined through the dielectric spectrometry, differential scanning calorimetry (DSC) and dynamic viscoelastic spectrometry. The results show that the Young's modulus of the filial polyethylene depends to a great extent upon the state of dispersion of filler in matrix, but it is independent of the interface structure and bulk structure. The better the dispersion, the higher the Young's modulus.展开更多
In this paper,the dependencies of Young's modulus and attenuation decrement on samarium sulfide polycrystals(SmS)under various annealing temperatures are studied by the piezoelectric ultrasonic composite oscillato...In this paper,the dependencies of Young's modulus and attenuation decrement on samarium sulfide polycrystals(SmS)under various annealing temperatures are studied by the piezoelectric ultrasonic composite oscillator technique at a frequency of 100 kHz in the temperature range of 80-300 K.A decrease in Young's modulus with an increase of the annealing temperature due to the texturing of the material was revealed.At the same time,attenuation peaks were observed at temperatures about 90 and 125 K,presumably due to Niblett-Wilks and Bordoni relaxations.展开更多
Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance f...Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.展开更多
The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In thi...The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.展开更多
Shale formations have recently gained plenty of attention owing to their large amounts of reserves.Horizontal drilling and hydraulic fracturing are the proposed approaches for the development of shale formations.The e...Shale formations have recently gained plenty of attention owing to their large amounts of reserves.Horizontal drilling and hydraulic fracturing are the proposed approaches for the development of shale formations.The extended information of the mechanical properties of shale formation is crucial for designing a successful hydraulic fracturing operation.On the other hand,the mechanical properties of such organic-rich formations are greatly affected by the mechanical characteristics of the present kerogen(organic matter),which dramatically changes during the maturation process.In this study,a Qingshankou shale sample containing kerogen type I is mechanically investigated at different maturity levels using the grid nanoindentation approach.To this end,the original immature sample is artificially matured during hydrous(HP)and anhydrous(AHP)pyrolysis.More than 930 nanoindentation tests were performed on grids of 9×8 on the surface of 13 samples with different maturities.The test results showed that the presence of water during pyrolysis can significantly affect the shale sample's mechanical characteristics.In higher temperatures and higher levels of maturity,the role of water becomes more pronounced.During hydrous pyrolysis,kerogen produces larger amounts of oil and bitumen,which become progressively porous.While the original sample showed a Young's modulus value of more than 48 GPa,and it fluctuated between approximately 19 and 32 GPa during the HP scenario and between 17 and 34 GPa during the AHP process.In terms of hardness,the original sample exhibited an initial value of about 1.1 GPa and more mature samples reflected hardness values in the range of approximately 0.3 and 0.97 GPa in both scenarios.According to the trends of mechanical properties during maturation,mechanical properties decreased at the initial stage of maturation and remained relatively constant during the oil window.Then,another decline was detected at the wet-gas window's closure.In the dry-gas window,HP and AHP scenarios exhibited different behaviors mainly due to the chemical structure of the kerogen residue.展开更多
BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for...BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for improving patient’s prognosis and reducing mortality.AIM To explore the value of elastography point quantification(ElastPQ)in improving the accuracy of early DKD diagnosis.METHODS A total of 69 patients with type 2 diabetes were recruited from Naval Military Medical University Affiliated Gongli Hospital.Patients were divided into early DKD group and medium DKD group according to pathological results and urinary albumin excretion rate(UAER).Another 40 patients with simple diabetes were included as the diabetes group.The baseline data,laboratory diagnostic indicators,and ultrasound indicators for each patient were recorded.The differences of the indicators in the three groups were compared.Multivariate logistic regression was used to analyze the influencing factors of the development from simple diabetes into early DKD and from early DKD into medium DKD.Receiver operating characteristic analyses of potential indicators in identifying early DKD and medium DKD,and early DKD and simple diabetes were established.RESULTS Multivariate logistic regression analysis showed that UAER(P<0.001),renocortical Young's Modulus(YM)(P<0.001),and renal parenchymal thickness(P=0.013)were the independent influencing factors of the development from early DKD into medium DKD.Diabetes duration(P=0.041),UAER(P=0.034),and renocortical YM(P=0.017)were the independent influencing factors of the development from simple diabetes into early DKD.Receiver operating characteristic analysis indicated that UAER,renocortical YM,and renal parenchymal thickness were accurate in identifying early DKD and medium DKD[all area under curve(AUC)>0.9].The accuracy of UAER(AUC=0.744),diabetes duration(AUC=0.757),and renocortical YM(AUC=0.782)for the diagnosis of early DKD and simple diabetes were limited.However,the combined diagnosis of UAER,diabetes duration,and renocortical YM was accurate in identifying early DKD and simple diabetes(AUC=0.906),which was significantly higher than any of the three indicators(all P<0.05).CONCLUSION ElastPQ is of great value in the diagnosis of early DKD.When combined with the diabetes duration and UAER,it is expected to diagnose accurately early DKD.展开更多
For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matr...For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matrix is a positive definite matrix or a positive semi-definite matrix, respectively. The advantages of the new methods are that they can solve the large scale stochastic linear complementarity problem, and spend less computational time. Numerical results show that the new methods are efficient and suitable for solving the large scale problems.展开更多
The generalized constitutive model relating the resilient modulus (MR) of flexible pavement layer materials to stress state, adopted by the Mechanistic-Empirical Pavement Design Guide (MEPDG), contains a set of consta...The generalized constitutive model relating the resilient modulus (MR) of flexible pavement layer materials to stress state, adopted by the Mechanistic-Empirical Pavement Design Guide (MEPDG), contains a set of constants known as k-values (k1, k2, and k3) which are associated with the physical state of the layer materials. In Ghana, natural gravels constitute the predominant and sometimes the sole layer materials for most flexible pavements yet representative k-values of gravel materials, have not been determined to permit full application and implementation of the mechanistic-empirical design concept to pavements involving such materials. In this study, k-values characterising typical natural quartzitic gravels used for road construction in the country were derived by regression techniques from MR values determined using laboratory repeated load triaxial test. Using multiple linear regression technique, correlation relationships were then developed between the k-values and the physical properties of the gravels, namely, percentages of materials passing the 9.5 mm (P9.5) and 2.0 mm (P2.0) sieves, liquid limit (LL), maximum dry density (ρdmax), and optimum moisture content (wopt). The regression analysis returned k1 values which ranged between 441 and 958 with a mean of 516;k2 which varied between 0.0636 and 0.2168 with a mean value of 0.1216;and, k3 values which ranged between 0.1257 and 3.1590 with a mean value of 1.723. Contrary to what is mostly reported in literature, the analysis returned positive k3 values for all but one gravel material, suggesting stress hardening under octahedral shear stress for those materials. While an expanded sample base is required to fully characterize the whole gamut of natural gravels used in pavement construction in the country, this study on limited quartzitic gravel samples has given a good indication of strong linear correlations between the k-values and the index properties of the gravels, to permit estimates of the constants for such gravels be made where capability and opportunity for conducting resilient modulus tests do not exist.However, further work is recommended to fully characterise the exact nature of k3 values for quartzitic gravels in the country.展开更多
Elastography can be used as a diagnostic method for quantitative characterization of tissue hardness information and thus,differential changes in pathophysiological states of tissues.In this study,we propose a new met...Elastography can be used as a diagnostic method for quantitative characterization of tissue hardness information and thus,differential changes in pathophysiological states of tissues.In this study,we propose a new method for shear wave elastography(SWE)based on laser-excited shear wave,called photoacoustic shear wave elastography(PASWE),which combines photoacoustic(PA)technology with ultrafast ultrasound imaging.By using a focused laser to excite shear waves and ultrafast ultrasonic imaging for detection,high-frequency excitation of shear waves and noncontact elastic imaging can be realized.The laser can stimulate the tissue with the light absorption characteristic to produce the thermal expansion,thus producing the shear wave.The frequency of shear wave induced by laser is higher and the frequency band is wider.By tracking the propagation of shear wave,Young’s modulus of tissue is reconstructed in the whole shear wave propagation region to further evaluate the elastic information of tissue.The feasibility of the method is verified by experiments.Compared with the experimental results of supersonic shear imaging(SSI),it is proved that the method can be used for quantitative elastic imaging of the phantoms.In addition,compared with the SSI method,this method can realize the noncontact excitation of the shear wave,and the frequency of the shear wave excited by the laser is higher than that of the acoustic radiation force(ARF),so the spatial resolution is higher.Compared to the traditional PA elastic imaging method,this method can obtain a larger imaging depth under the premise of ensuring the imaging resolution,and it has potential application value in the clinical diagnosis of diseases requiring noncontact quantitative elasticity.展开更多
文摘This paper presents a new elasticity and finite element formulation for different Young's modulus when tension and compression loadings in anisotropy media. The case studies, such as anisotropy and isotropy, were investigated. A numerical example was shown to find out the changes of neutral axis at the pure bending beams.
基金The project supported by the National Natural Science Foundation of China (10202023,10272103),the Excellent Post-doctoral Research-starting Fund of CAS and the Key Project from CAS (No.KJCX2-SW-L2)
文摘In the present paper,the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models.Aluminum film and two kinds of substrates,i.e.glass and silicon,are studied.Nanoindentation XP Ⅱ and continuous stiffness mode are used during the experiments.In order to avoid the influence of the Oliver and Pharr method used in the experiments,the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption.The volume fraction model(CZ model)proposed by Fabes et al.(1992)is used and modified to analyze the measured hardness.The method proposed by Doerner and Nix(DN formula)(1986)is modified to analyze the measured Young's modulus.Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature,which include the results of two kinds of systems,i.e.,a soft film on a hard substrate and a hard film on a soft substrate.In the modified CZ model,the indentation influence angle,(?), is considered as a relevant physical parameter,which embodies the effects of the indenter tip radius, pile-up or sink-in phenomena and deformation of film and substrate.
基金Project supported by National Natural Science Foundation of China
文摘The correlation between Young's modulus of mica-filled high density polyethylene (HDPE), low density polyethylene(LDPE) and the state of dispersion of plasma-treated mica in the polymer matrices was studied. The modulus and the number average diameter of mica aggregates in matrix were determined with tensile testing and image analysis respectively. The interface structure of the filler/matrix and the bulk structure of matrix were examined through the dielectric spectrometry, differential scanning calorimetry (DSC) and dynamic viscoelastic spectrometry. The results show that the Young's modulus of the filial polyethylene depends to a great extent upon the state of dispersion of filler in matrix, but it is independent of the interface structure and bulk structure. The better the dispersion, the higher the Young's modulus.
基金This research was supported by Russian Science Foundation under Grant 19-72-30004.
文摘In this paper,the dependencies of Young's modulus and attenuation decrement on samarium sulfide polycrystals(SmS)under various annealing temperatures are studied by the piezoelectric ultrasonic composite oscillator technique at a frequency of 100 kHz in the temperature range of 80-300 K.A decrease in Young's modulus with an increase of the annealing temperature due to the texturing of the material was revealed.At the same time,attenuation peaks were observed at temperatures about 90 and 125 K,presumably due to Niblett-Wilks and Bordoni relaxations.
基金Supported by the National Natural Science Foundation of China(No.61072046)the Basic Scientific and Technological Frontier Project of Henan Province(No.1123004100322)
文摘Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.
文摘The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20574)the Hainan Province Science and Technology Special Fund(Grant No.ZDYF2023GXJS009).
文摘Shale formations have recently gained plenty of attention owing to their large amounts of reserves.Horizontal drilling and hydraulic fracturing are the proposed approaches for the development of shale formations.The extended information of the mechanical properties of shale formation is crucial for designing a successful hydraulic fracturing operation.On the other hand,the mechanical properties of such organic-rich formations are greatly affected by the mechanical characteristics of the present kerogen(organic matter),which dramatically changes during the maturation process.In this study,a Qingshankou shale sample containing kerogen type I is mechanically investigated at different maturity levels using the grid nanoindentation approach.To this end,the original immature sample is artificially matured during hydrous(HP)and anhydrous(AHP)pyrolysis.More than 930 nanoindentation tests were performed on grids of 9×8 on the surface of 13 samples with different maturities.The test results showed that the presence of water during pyrolysis can significantly affect the shale sample's mechanical characteristics.In higher temperatures and higher levels of maturity,the role of water becomes more pronounced.During hydrous pyrolysis,kerogen produces larger amounts of oil and bitumen,which become progressively porous.While the original sample showed a Young's modulus value of more than 48 GPa,and it fluctuated between approximately 19 and 32 GPa during the HP scenario and between 17 and 34 GPa during the AHP process.In terms of hardness,the original sample exhibited an initial value of about 1.1 GPa and more mature samples reflected hardness values in the range of approximately 0.3 and 0.97 GPa in both scenarios.According to the trends of mechanical properties during maturation,mechanical properties decreased at the initial stage of maturation and remained relatively constant during the oil window.Then,another decline was detected at the wet-gas window's closure.In the dry-gas window,HP and AHP scenarios exhibited different behaviors mainly due to the chemical structure of the kerogen residue.
基金Shanghai Health and Family Planning Commission,No.201440051Shanghai Pudong New Area Health and Family Planning Commission,No.PW2016A-19
文摘BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for improving patient’s prognosis and reducing mortality.AIM To explore the value of elastography point quantification(ElastPQ)in improving the accuracy of early DKD diagnosis.METHODS A total of 69 patients with type 2 diabetes were recruited from Naval Military Medical University Affiliated Gongli Hospital.Patients were divided into early DKD group and medium DKD group according to pathological results and urinary albumin excretion rate(UAER).Another 40 patients with simple diabetes were included as the diabetes group.The baseline data,laboratory diagnostic indicators,and ultrasound indicators for each patient were recorded.The differences of the indicators in the three groups were compared.Multivariate logistic regression was used to analyze the influencing factors of the development from simple diabetes into early DKD and from early DKD into medium DKD.Receiver operating characteristic analyses of potential indicators in identifying early DKD and medium DKD,and early DKD and simple diabetes were established.RESULTS Multivariate logistic regression analysis showed that UAER(P<0.001),renocortical Young's Modulus(YM)(P<0.001),and renal parenchymal thickness(P=0.013)were the independent influencing factors of the development from early DKD into medium DKD.Diabetes duration(P=0.041),UAER(P=0.034),and renocortical YM(P=0.017)were the independent influencing factors of the development from simple diabetes into early DKD.Receiver operating characteristic analysis indicated that UAER,renocortical YM,and renal parenchymal thickness were accurate in identifying early DKD and medium DKD[all area under curve(AUC)>0.9].The accuracy of UAER(AUC=0.744),diabetes duration(AUC=0.757),and renocortical YM(AUC=0.782)for the diagnosis of early DKD and simple diabetes were limited.However,the combined diagnosis of UAER,diabetes duration,and renocortical YM was accurate in identifying early DKD and simple diabetes(AUC=0.906),which was significantly higher than any of the three indicators(all P<0.05).CONCLUSION ElastPQ is of great value in the diagnosis of early DKD.When combined with the diabetes duration and UAER,it is expected to diagnose accurately early DKD.
文摘For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matrix is a positive definite matrix or a positive semi-definite matrix, respectively. The advantages of the new methods are that they can solve the large scale stochastic linear complementarity problem, and spend less computational time. Numerical results show that the new methods are efficient and suitable for solving the large scale problems.
文摘The generalized constitutive model relating the resilient modulus (MR) of flexible pavement layer materials to stress state, adopted by the Mechanistic-Empirical Pavement Design Guide (MEPDG), contains a set of constants known as k-values (k1, k2, and k3) which are associated with the physical state of the layer materials. In Ghana, natural gravels constitute the predominant and sometimes the sole layer materials for most flexible pavements yet representative k-values of gravel materials, have not been determined to permit full application and implementation of the mechanistic-empirical design concept to pavements involving such materials. In this study, k-values characterising typical natural quartzitic gravels used for road construction in the country were derived by regression techniques from MR values determined using laboratory repeated load triaxial test. Using multiple linear regression technique, correlation relationships were then developed between the k-values and the physical properties of the gravels, namely, percentages of materials passing the 9.5 mm (P9.5) and 2.0 mm (P2.0) sieves, liquid limit (LL), maximum dry density (ρdmax), and optimum moisture content (wopt). The regression analysis returned k1 values which ranged between 441 and 958 with a mean of 516;k2 which varied between 0.0636 and 0.2168 with a mean value of 0.1216;and, k3 values which ranged between 0.1257 and 3.1590 with a mean value of 1.723. Contrary to what is mostly reported in literature, the analysis returned positive k3 values for all but one gravel material, suggesting stress hardening under octahedral shear stress for those materials. While an expanded sample base is required to fully characterize the whole gamut of natural gravels used in pavement construction in the country, this study on limited quartzitic gravel samples has given a good indication of strong linear correlations between the k-values and the index properties of the gravels, to permit estimates of the constants for such gravels be made where capability and opportunity for conducting resilient modulus tests do not exist.However, further work is recommended to fully characterise the exact nature of k3 values for quartzitic gravels in the country.
基金supported by the National Key R&D Program of China(Grant No.2022YFC2402400)the National Natural Science Foundation of China(Grant No.62275062)and Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology(Grant No.2020B121201010-4).
文摘Elastography can be used as a diagnostic method for quantitative characterization of tissue hardness information and thus,differential changes in pathophysiological states of tissues.In this study,we propose a new method for shear wave elastography(SWE)based on laser-excited shear wave,called photoacoustic shear wave elastography(PASWE),which combines photoacoustic(PA)technology with ultrafast ultrasound imaging.By using a focused laser to excite shear waves and ultrafast ultrasonic imaging for detection,high-frequency excitation of shear waves and noncontact elastic imaging can be realized.The laser can stimulate the tissue with the light absorption characteristic to produce the thermal expansion,thus producing the shear wave.The frequency of shear wave induced by laser is higher and the frequency band is wider.By tracking the propagation of shear wave,Young’s modulus of tissue is reconstructed in the whole shear wave propagation region to further evaluate the elastic information of tissue.The feasibility of the method is verified by experiments.Compared with the experimental results of supersonic shear imaging(SSI),it is proved that the method can be used for quantitative elastic imaging of the phantoms.In addition,compared with the SSI method,this method can realize the noncontact excitation of the shear wave,and the frequency of the shear wave excited by the laser is higher than that of the acoustic radiation force(ARF),so the spatial resolution is higher.Compared to the traditional PA elastic imaging method,this method can obtain a larger imaging depth under the premise of ensuring the imaging resolution,and it has potential application value in the clinical diagnosis of diseases requiring noncontact quantitative elasticity.