期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
An Adaptive Nonsingular Fast Terminal Sliding Mode Control for Yaw Stability Control of Bus Based on STI Tire Model 被引量:5
1
作者 Xiaoqiang Sun Yujun Wang +2 位作者 Yingfeng Cai Pak Kin Wong Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期182-195,共14页
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the... Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model. 展开更多
关键词 BUS yaw stability control Sliding mode control STI tire model CO-SIMULATION
在线阅读 下载PDF
Yaw stability control using the fuzzy PID controller for active front steering
2
作者 李强 Shi Guobiao Wei Jie 《High Technology Letters》 EI CAS 2010年第1期94-98,共5页
In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-... In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability. 展开更多
关键词 VEHICLE active front steering (AFS) yaw stability fuzzy PID control
在线阅读 下载PDF
CFD Based Determination of Dynamic Stability Derivatives in Yaw for a Bird 被引量:3
3
作者 M. A. Moelyadi G. Sachs 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期201-208,共8页
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. Th... Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement. 展开更多
关键词 dynamic yaw stability CFD Fourier analysis unsteady aerodynamics reduced frequency
在线阅读 下载PDF
Experimental Study on the Improvement of Yaw Stability by Coordination Control between the Caudal Fin and Anal Fin 被引量:2
4
作者 Jiang Ding Changzhen Zheng +6 位作者 Chaocheng Song Qiyang Zuo Yaohui Xu Bingbing Dong Jiaxu Cui Kai He Fengran Xie 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1261-1271,共11页
Due to the unique locomotion,the head-shaking problem of biomimetic robotic fish inevitably occurs during rectilinear locomotion,which strongly hinders its practical applications.In this paper,we experimentally study ... Due to the unique locomotion,the head-shaking problem of biomimetic robotic fish inevitably occurs during rectilinear locomotion,which strongly hinders its practical applications.In this paper,we experimentally study this problem by proposing the method of coordination control between the caudal fin and anal fin.First,an untethered biomimetic robotic fish,equipped with an anal fin,a caudal fin and two pectoral fins,is developed as the experimental platform.Second,a Central Pattern Generator(CPG)-based controller is used to coordinate the motions of the anal fin and caudal fin.Third,extensive experiments are conducted to explore different combinations of the flapping frequencies,the flapping amplitudes,and the phase differences between the anal fin and caudal fin.Notably,through proper control of the anal fin,the amplitude of the yaw motion can be as small as 4.32°,which sees a 65%improvement compared to the scenario without anal fin,and a 57%improvement compared to that with a stationary anal fin.This paper provides a novel way to alleviate the head-shaking problem for biomimetic robotic fish,and first test this method on an untethered,freely swimming robotic platform,which can shed light on the development of underwater robotics. 展开更多
关键词 Biomimetic robotic fish Anal fin Head-shaking yaw stability
原文传递
Integrated yaw and rollover control based on differential braking for off-road vehicles with mechanical elastic wheel 被引量:2
5
作者 LI Hai-qing ZHAO You-qun +1 位作者 LIN Fen XIAO Zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2354-2367,共14页
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif... Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening. 展开更多
关键词 integrated control rollover stability yaw stability active braking fuzzy control CO-SIMULATION mechanical elastic wheel
在线阅读 下载PDF
Map-based control method for vehicle stability enhancement 被引量:2
6
作者 Moon-Young Yoon Seung-Hwan Baek +1 位作者 Kwang-Suk Boo Heung-Seob Kim 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期114-120,共7页
This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r... This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control. 展开更多
关键词 model-referenced control map-based control vehicle stability yaw moment
在线阅读 下载PDF
ACTIVE FRONT STEERING DURING BRAKING PROCESS 被引量:9
7
作者 CHEN Deling CHEN Li YIN Chengliang ZHANG Yong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期64-70,共7页
An active front steering (AFS) intervention control during braking for vehicle stability is presented. Based on the investigation of AFS mechanism, a simplified model of steering system is established and integrated... An active front steering (AFS) intervention control during braking for vehicle stability is presented. Based on the investigation of AFS mechanism, a simplified model of steering system is established and integrated with vehicle model. Then the AFS control on vehicle handling dynamics during braking is designed. Due to the difficulties associated with the sideslip angle measurement of vehicle, a state observer is designed to provide real time estimation. Thereafter, the controller with the feedback of both sideslip and yaw angle is implemented. To evaluate the system control, the proposed AFS controlled vehicle has been tested in the Hardware-in-the-loop-simulation (HILS) system and compared with that of conventional vehicle. Results show that AFS can improve vehicle lateral stability effectively without reducing the braking performance. 展开更多
关键词 Active front steering(AFS) Handling stability yaw rate Sideslip angle Hardware-in-the-loop-simulation (HILS)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部