期刊文献+
共找到1,623篇文章
< 1 2 82 >
每页显示 20 50 100
基于改进边界框回归损失的YOLOv3检测算法 被引量:9
1
作者 沈记全 陈相均 翟海霞 《计算机工程》 CAS CSCD 北大核心 2022年第3期236-243,共8页
YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失... YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失算法BR-IoU。将IoU作为边界框回归损失函数的损失项,使不同尺度的边界框在回归过程中获得更均衡的损失优化权重。在此基础上,通过添加惩罚项最小化预测框与真值框中心点间围成的矩形面积,并提高预测框与真值框之间宽高比的一致性,从而优化边界框的回归收敛效果。在PASCAL VOC和COCO数据集上的实验结果表明,在不影响实时性的前提下,BR-IoU能够有效提高检测精度,采用BR-IoU的YOLOv3算法在PASCAL VOC 2007测试集上mAP较原YOLOv3算法和G-YOLO算法分别提高2.5和1.51个百分点,在COCO测试集上分别提高2.07和0.66个百分点。 展开更多
关键词 yolov3检测算法 边界框回归 交并比 BR-IoU损失算法 宽高比
在线阅读 下载PDF
改进YOLOv8算法的机场外来物检测研究
2
作者 郭九霞 李金润 +2 位作者 王义龙 李静远 唐锐 《舰船电子工程》 2025年第3期119-125,共7页
为解决机场外来物检测方法存在检测稳定性差、漏检的问题,论文使用YOLOv8算法进行改进。首先,使用动态卷积ODConv,通过引入可学习的形变模块,动态调整卷积核的形状、大小及通道维度,优化卷积过程并专注于机场外来物的形状大小和尺度变化... 为解决机场外来物检测方法存在检测稳定性差、漏检的问题,论文使用YOLOv8算法进行改进。首先,使用动态卷积ODConv,通过引入可学习的形变模块,动态调整卷积核的形状、大小及通道维度,优化卷积过程并专注于机场外来物的形状大小和尺度变化,实现对图像特征信息的高效提取;其次,设计了C2f_DAConv模块,降低了算法的参数量;然后,在PANet网络架构的基础上,融合主干网络的P2特征层,并将PANet网络架构更改为BiFPN,该网络实现了底层细节特征信息和高层语义特征信息的高效融合,减少了外来物目标特征的信息丢失;最后,为解决预测框与目标框之间的定位误差问题,更改损失函数为Inner SIoU,优化了算法的计算过程,加快了算法训练的收敛速度,同时提升了算法的检测精度。实验结果表明,改进的算法相比原YOLOv8算法,其参数量降低了35.5%,平均精度均值(mAP)达到97.3%,提升了2.0%,召回率(Re-call)为95.5%,提升了5.2%;对比分析F1曲线、P-R曲线和Recall曲线,表明改进的算法在检测稳定性方面有显著提升,能有效解决机场外来物的漏检问题。 展开更多
关键词 改进yolov8算法 FOD检测 动态卷积 机场安全
在线阅读 下载PDF
基于YOLOv8-DSG的钢铁表面缺陷检测算法
3
作者 邹彦艳 曹衍芬 +2 位作者 张馨月 李志 崔世龙 《吉林大学学报(信息科学版)》 2025年第1期116-125,共10页
针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、漏检误检率高等问题,提出了YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。在传统Y... 针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、漏检误检率高等问题,提出了YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。在传统YOLOv8算法的基础上,首先在Backbone网络的C2f(Convolution to Feature)模块中嵌入了可变形卷积网络DCN(Deformable Convolution Network),增强了模型在复杂背景条件下的特征提取能力;其次,在Neck网络中引入了SE(Squeeze and Excitation Network)注意力模块,突出钢铁表面重要特征信息,提升了特征融合的丰富性;最后,利用GIOU(Generalized Intersection Over Union)损失函数代替原有的CIOU(Complete Intersection Over Union),相比CIOU,GIOU引入了最小包围框面积比率,可更准确衡量框的重合面积。实验结果表明,YOLOv8-DSG算法在NEU-DET数据集上平均精度mAP达到80%,相较于原YOLOv8算法,提高了3.3%,且误检、漏检率低,具有更高的检测精度和运算效率,可在质量检测方面发挥重要作用。 展开更多
关键词 缺陷检测 yolov8算法 可变形卷积 注意力机制 损失函数
在线阅读 下载PDF
基于SGD和余弦退火算法改进YOLOv3的高压电力设备目标检测方法 被引量:2
4
作者 刘国权 陈尚良 +1 位作者 李跃忠 周焕银 《东华理工大学学报(自然科学版)》 CAS 北大核心 2024年第3期294-300,共7页
针对现有高压电力设备检测方法存在实时性差、准确性低和难以部署在移动端等问题,提出一种基于随机梯度下降(SGD)和余弦退火算法改进YOLOv3的高压电力输送设备安全检测算法。采用网络复杂度较小、计算速度快、识别精度高且易于部署的移... 针对现有高压电力设备检测方法存在实时性差、准确性低和难以部署在移动端等问题,提出一种基于随机梯度下降(SGD)和余弦退火算法改进YOLOv3的高压电力输送设备安全检测算法。采用网络复杂度较小、计算速度快、识别精度高且易于部署的移动端YOLOv3作为算法的主要框架;然后设计了深层的残差网络(Darknet53)作为该模型的主干特征提取网络,在提高识别精度的同时解决网络过深可能产生的梯度爆炸问题;进一步地结合SGD优化算法和余弦退火算法,在保证网络训练学习效率较高的同时避免网络陷入局部最优解,以此提高高压电力设备安全检测的速度和精度,满足实际需要;最后使用采集的高压电力设备数据集对整个网络进行训练。结果表明,YOLOv3在高压电力设备数据集上的平均检测精度达到了97.08%,检测速度达到了56帧/s,误检率只有0.78%。 展开更多
关键词 高压电力设备检测 yolov3 Darknet53 SGD 余弦退火算法
在线阅读 下载PDF
基于改进YOLOv3-SPP算法的道路车辆检测 被引量:4
5
作者 王涛 冯浩 +4 位作者 秘蓉新 李林 何振学 傅奕茗 吴姝 《通信学报》 EI CSCD 北大核心 2024年第2期68-78,共11页
针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提... 针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提算法对小目标和遮挡目标的特征提取能力,引入空洞卷积模块,增大目标的感受野。实验结果表明,所提算法在检测车辆目标时m AP提高了1.79%,也有效减少了在检测紧密车辆目标时出现的漏检现象。 展开更多
关键词 车辆检测 yolov3-SPP算法 激活函数 空洞卷积 深度学习
在线阅读 下载PDF
基于YOLOv5的倾斜视角下轻型红外小目标检测算法
6
作者 张飞 王剑 张岳松 《红外技术》 北大核心 2025年第2期217-225,共9页
针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来... 针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来重新设计特征提取网络,提高特征定位与计算效率,并搭配改进特征金字塔结构提取关键特征和提升模型稳定性。最后,颈部去掉下采样重新搭配SimAM形成新的特征融合结构,并重新设计检测头来适应本文数据集。对比实验显示,相对原始YOLOv5s模型,在自制和公共数据集上表现突出。m AP50达到94.5%,检测速度提高20.8%,模型大小压缩至10.1 MB,降低了30.3%,且GFLOPs下降了29.1%。这些改进实现了对目标的准确快速检测,有效地平衡了模型大小、检测精度和推理速度。 展开更多
关键词 图像处理 行人检测 红外场景 模型优化 yolov5算法
在线阅读 下载PDF
融合注意力机制的YOLOv8火焰目标检测算法 被引量:1
7
作者 钱伟 杨潇 +2 位作者 刘全义 罗宏 王海斌 《安全与环境学报》 北大核心 2025年第1期75-84,共10页
目前民航客机货舱火灾探测主要通过烟雾探测实现,存在漏报、误报、实时性差等问题,基于视觉的视频图像探测是解决上述问题的重要技术。针对视频图像检测火焰算法多收敛速度慢等问题,提出了基于YOLOv8优化的火焰检测算法模型。首先,在众... 目前民航客机货舱火灾探测主要通过烟雾探测实现,存在漏报、误报、实时性差等问题,基于视觉的视频图像探测是解决上述问题的重要技术。针对视频图像检测火焰算法多收敛速度慢等问题,提出了基于YOLOv8优化的火焰检测算法模型。首先,在众多视频火焰检测算法中,以火焰检测精准度筛选出YOLOv8算法作为底层火焰检测算法,针对YOLOv8算法,以优化速度为方向,设计了RFAConv卷积方式,运用组卷积方式融合卷积通道,以达到减少YOLOv8计算量、提升运算速度的目的。通过采集模拟货舱大空间火灾火焰图像,验证了优化后的YOLOv8火焰检测算法在检测精度不变的情况下,压缩了10%的参数量,实现了算法的轻量化,提升了运算效率。 展开更多
关键词 安全工程 火焰识别 yolov8 图像检测 算法优化
在线阅读 下载PDF
远距离情形下的改进YOLOv8行人检测算法
8
作者 汤静雯 赖惠成 王同官 《计算机工程》 北大核心 2025年第4期303-313,共11页
智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取... 智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取模块(EM),使得网络更好地学习行人特征和捕捉行人特点,在减少网络参数量的同时提高检测精度。设计一个重构的检测头模块,重新整合后的检测层增强了网络对小目标的识别能力,有效检测小目标行人。引入双向特征金字塔网络来设计新的颈部网络,即双向扩张残差-特征金字塔网络(BDR-FPN),利用扩张残差模块和附权注意力机制来扩展感受野及有所侧重地学习行人特征,缓解网络对遮挡行人不敏感问题。实验结果表明,在CityPersons数据集上进行训练和验证,相比原算法YOLOv8,ME-YOLO算法的AP_(50)提高了5.6百分点,模型参数量减少了41%,模型大小压缩了40%,在TinyPerson数据集上验证算法的有效性和泛化性,AP_(50)提高了4.1百分点,AP_(50∶95)提高了1.7百分点。该算法在大幅度减少模型参数和大小的同时,有效提高了检测精度,在智慧社区场景中有较好的应用价值。 展开更多
关键词 行人检测 智慧社区 小目标行人 特征金字塔网络 yolov8算法
在线阅读 下载PDF
基于改进YOLOv8s的花色布疵点检测算法
9
作者 王跃坤 徐洋 +2 位作者 余智祺 解国升 盛晓伟 《棉纺织技术》 2025年第2期41-48,共8页
针对花色布背景图案复杂、部分疵点目标小、与背景分离难度大,及其带来的自动化实时检测挑战等问题,提出一种基于改进YOLOv8s的花色布疵点检测算法。为增强网络检测疵点小目标的能力,引入BiFPN(Bi⁃directional Feature Pyramid)特征融... 针对花色布背景图案复杂、部分疵点目标小、与背景分离难度大,及其带来的自动化实时检测挑战等问题,提出一种基于改进YOLOv8s的花色布疵点检测算法。为增强网络检测疵点小目标的能力,引入BiFPN(Bi⁃directional Feature Pyramid)特征融合网络,充分融合语义信息和位置信息,增强算法区分疵点和背景的能力;同时,注意到疵点小目标中低质量样本对检测结果的影响,引入WIoU v3损失函数,抑制训练过程中低质量样本产生的有害梯度;最后,引入FasterBlock模型改进原始模型neck中的C2f模块,降低模型整体的参数量。结果表明:改进后的YOLOv8s模型在整个数据集的mAP@0.5∶0.95上可达59.6%,比原YOLOv8s模型提高了2.8个百分点;小目标的APs@0.5∶0.95可达45.1%,比原YOLOv8s模型提高了8.3个百分点;改进后模型参数量为10.557 M,检测速度可达131.6帧/s。认为:改进的YOLOv8s有效提升了沾污、花毛等小目标的检测效果。 展开更多
关键词 花色布 疵点检测 yolov8s BiFPN FasterBlock WIoU v3损失函数
在线阅读 下载PDF
基于YOLOv8的车载红外目标检测改进算法研究
10
作者 侯军 杨洁 邵凯青 《计量学报》 北大核心 2025年第2期167-176,共10页
针对车载红外图像检测中的目标相互遮挡和小尺度目标漏检问题,提出一种基于YOLOv8的车载红外目标检测改进算法(VITD-YOLO)。首先,在Neck网络中增加大尺寸特征网络预测层(S-layer),增强网络对于小目标的检测精度;其次,在Backbone网络中设... 针对车载红外图像检测中的目标相互遮挡和小尺度目标漏检问题,提出一种基于YOLOv8的车载红外目标检测改进算法(VITD-YOLO)。首先,在Neck网络中增加大尺寸特征网络预测层(S-layer),增强网络对于小目标的检测精度;其次,在Backbone网络中设计C2F-DA模块,利用offset轻量化结构增强模型对目标的局部特征感知能力,并结合3种不同尺度自注意力设计了动态卷积头检测模组(Dy-head),提高被遮挡和密集目标的定位和分类精度;最后,采用Focal-SIoU作为网络的损失函数,解决训练样本中行人车辆目标类别不均衡问题,并提高网络训练和推理能力。将该算法在FLIR红外数据集上测试,实验结果表明:VITD-YOLO具有良好的检测效果和鲁棒性,对小尺度目标检测精度更高;该算法的平均精度达到91.2%,比原算法提高了2.5%,召回率达到83.4%,比原算法提高3.2%。 展开更多
关键词 机器视觉 车载红外目标检测算法 yolov8 辅助驾驶 图像识别 C2F-DA Focal-SioU
在线阅读 下载PDF
基于YOLOv5算法的长江大保护水利工程项目多场景质量安全检测
11
作者 徐亮 陈旭 +1 位作者 张卓 郑向泉 《水利水电科技进展》 北大核心 2025年第2期82-89,共8页
为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现... 为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现场拍摄、网络爬虫技术及项目部内部数据资源,搜集并整理了上千张高质量照片,构建了质量安全图像数据集。在此基础上,通过融入区域检测功能,多场景质量安全检测系统能对指定的作业区域进行精准监测,可以有效地避免误检情况,提升检测效率与准确性。 展开更多
关键词 长江大保护 水利工程项目 质量安全检测 图像增强 多场景 yolov5算法
在线阅读 下载PDF
面向弱光交通场景的YOLOv7道路标志检测算法优化
12
作者 孙亭 杨洁 +1 位作者 李家璇 王耀宗 《计算机工程》 北大核心 2025年第3期342-351,共10页
针对交通标志检测算法在黑夜及弱光条件下存在检测精度不高、漏检等问题,提出一种改进YOLOv7的交通标志检测算法。构建用于弱光增强的高斯图像滤波器,抑制其背景噪声,对图像实现像素增强。在YOLOv7网络中,构建新的AC-ResBlock残差模块... 针对交通标志检测算法在黑夜及弱光条件下存在检测精度不高、漏检等问题,提出一种改进YOLOv7的交通标志检测算法。构建用于弱光增强的高斯图像滤波器,抑制其背景噪声,对图像实现像素增强。在YOLOv7网络中,构建新的AC-ResBlock残差模块来替代ELAN中的3×3卷积模块,以提高交通标志的特征提取能力和网络推理速度。引入SIoU损失函数提高模型的准确度,加速训练过程收敛。采用K-means++算法代替K-means重新标定锚框的尺寸,在扩展后的中国交通标志检测数据集CCTSDB上的实验结果表明,改进后的YOLOv7算法准确率达到95.7%,召回率达到94.8%,平均精度达到96.3%,优于YOLOv8、YOLOv5及其他主流检测算法,可以实现黑夜及弱光条件下的交通标志检测。对于复杂环境下的交通标志检测具有一定的研究意义。 展开更多
关键词 交通标志检测 yolov7算法 黑夜图像增强 自注意力机制 损失函数
在线阅读 下载PDF
改进YOLOv8的钢材表面缺陷检测算法
13
作者 徐莲蓉 梁少华 《现代电子技术》 北大核心 2025年第4期173-180,共8页
为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone... 为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone中,使模型能够更好地关注目标缺陷的特征信息;接着,采用高效层聚合网络(RepGFPN)模块作为颈部网络,充分融合不同尺度的特征,提高特征融合能力;最后,引入轻量级上采样算子CARAFE,进一步提升模型的检测效果。实验结果显示,在公开的NEU-DET数据集上,改进后模型的平均精度均值(mAP)达到了81.1%,相较于原始YOLOv8模型,mAP提高了2.7%,精确率提升了3.9%。与此同时,在GC10-DET数据集上的实验也表明改进模型具有良好的鲁棒性,证明了所提算法能够有效地完成钢材表面缺陷的检测任务。 展开更多
关键词 钢材表面缺陷 缺陷检测 yolov8算法 坐标注意力机制 高效层聚合网络 识别能力
在线阅读 下载PDF
基于多平台优化的YOLOv4行人检测算法研究
14
作者 陈一璐 邹瑞滨 +2 位作者 高振兴 孙嘉豪 高扬 《中文科技期刊数据库(文摘版)工程技术》 2025年第1期072-075,共4页
随着计算机视觉和深度学习技术的迅速发展,行人检测在智能监控、自动驾驶等应用领域中变得至关重要。本文基于Jetson Xavier NX平台,针对YOLOv4模型进行了优化研究。为了提升模型在复杂场景下的检测精度,本文在YOLOv4网络中引入了Squeez... 随着计算机视觉和深度学习技术的迅速发展,行人检测在智能监控、自动驾驶等应用领域中变得至关重要。本文基于Jetson Xavier NX平台,针对YOLOv4模型进行了优化研究。为了提升模型在复杂场景下的检测精度,本文在YOLOv4网络中引入了Squeeze-and-Excitation(SE)块和Convolutional Block Attention Module(CBAM),以增强模型的特征提取能力。实验结果表明,SE块和CBAM的引入有效提升了行人检测精度,其中CBAM模型的检测精度相比基准模型提升了2.4个百分点。同时,在Jetson Xavier NX平台上进行的性能测试显示,尽管SE块和CBAM的引入增加了网络的参数量和计算复杂度,但推理速度仅略有下降,依然满足嵌入式平台的实时性要求。此外,本文通过对比不同嵌入式平台(如Jetson Nano、Raspberry Pi 4)的性能表现,进一步验证了Jetson Xavier NX平台在高效行人检测任务中的优越性。本文的研究为在性能优化和计算效率之间寻求平衡的行人检测模型提供了新的思路。 展开更多
关键词 行人检测 yolov4算法 Jetson Xavier NX SE块 CBAM
在线阅读 下载PDF
基于改进YOLOv8的轻量化藏药材植物检测算法
15
作者 罗志凌 李东 刘晓静 《软件导刊》 2025年第1期86-92,共7页
由于藏药生长环境恶劣,人工识别藏药材植物非常困难,提出一种基于改进YOLOv8的轻量级检测算法LTP-YOLO检测户外环境中的藏药材植物。首先,利用MobileViT替换YOLOv8特征提取网络来减少算法参数量和计算量。其次,引入内容感知特征重组上... 由于藏药生长环境恶劣,人工识别藏药材植物非常困难,提出一种基于改进YOLOv8的轻量级检测算法LTP-YOLO检测户外环境中的藏药材植物。首先,利用MobileViT替换YOLOv8特征提取网络来减少算法参数量和计算量。其次,引入内容感知特征重组上采样算子CARAFE帮助算法在上采样时感知上下文信息。再次,提出多尺度融合注意力机制MFA建立局部跨通道交互提升算法检测精度。实验表明,所提算法将参数量从3.02 MB减少到1.28MB,计算量从8.2 GFLOPs减少到5.8 GFLOPs,在自建的藏药植物图像数据集上mAP@.5相较于YOLOv8更优。证明了该算法可满足移动设备的高精度、低计算部署需求,并在各种密集植物检测任务中显示出广阔的应用前景。 展开更多
关键词 藏药材植物 深度学习 目标检测 轻量化算法 yolov8
在线阅读 下载PDF
基于YOLOv5的管道环焊缝缺陷目标检测算法分析
16
作者 彭云超 李亚平 +3 位作者 齐峰 饶连涛 刘九宏 徐杰 《无损检测》 2025年第3期62-70,共9页
基于漏磁内检测技术,采用PyTorch框架,应用YOLOv5算法对实际管道环焊缝缺陷漏磁信号图像进行了自动识别,通过对算法的进一步优化与改进,分析了其对自动识别准确率的影响。试验结果表明,模型在图像数据混合增强后,各指标均有了显著提升,... 基于漏磁内检测技术,采用PyTorch框架,应用YOLOv5算法对实际管道环焊缝缺陷漏磁信号图像进行了自动识别,通过对算法的进一步优化与改进,分析了其对自动识别准确率的影响。试验结果表明,模型在图像数据混合增强后,各指标均有了显著提升,IoU阈值大于0.5的平均精度提升了近30%;通过增加小目标检测层,大幅降低了目标检测损失函数均值,改善了缺陷的目标检测效果;显著提升了缺陷的识别率,最高提升11.05%,获得了较好的自动识别结果。该方法为管道环焊缝信号异常数据判读提供了高效的方法和技术手段,对于管道智能化检测实际生产作业具有重要作用。 展开更多
关键词 漏磁内检测 管道环焊缝 自动识别 yolov5算法 小目标检测
在线阅读 下载PDF
基于改进YOLOv10的轻量化目标检测算法
17
作者 刘印 龚长友 徐国栋 《自动化与信息工程》 2025年第1期29-35,共7页
针对目标检测算法部署在边缘设备的轻量化需求,提出一种基于改进YOLOv10的轻量化目标检测算法(CMD-YOLO算法)。该算法利用跨尺度特征融合模块对YOLOv10算法的网络结构进行改进,减少了算法模型的参数量与计算量;采用基于Mamba的线性注意... 针对目标检测算法部署在边缘设备的轻量化需求,提出一种基于改进YOLOv10的轻量化目标检测算法(CMD-YOLO算法)。该算法利用跨尺度特征融合模块对YOLOv10算法的网络结构进行改进,减少了算法模型的参数量与计算量;采用基于Mamba的线性注意力机制改进的部分自注意力模块替换传统的部分自注意力模块,进一步降低了算法模型的参数量;利用空间深度转换卷积模块替换部分传统卷积模块,增强了算法模型对下采样细节信息的提取能力;利用动态上采样器DySample替换传统的上采样模块,在保持上采样精度的同时,降低了算法模型的计算延迟。实验结果表明,CMD-YOLO算法与YOLOv10-n算法相比,在检测精度略微提升的同时,算法模型参数量降低了30.5%,计算量下降了19%,权重文件缩小了29.3%,计算延迟减少了8.8%,能够满足目标检测算法部署在边缘设备中的轻量化需求。 展开更多
关键词 目标检测算法 yolov10算法 跨尺度特征融合模块 Mamba线性注意力机制 空间深度转换卷积模块 动态上采样器
在线阅读 下载PDF
基于损失函数与注意力机制改进的YOLOv8火焰目标检测算法优化研究
18
作者 周欣 徐培哲 +3 位作者 李堃 熊椗宇 宋建平 夏子潮 《船海工程》 北大核心 2025年第2期19-25,共7页
针对火焰检测领域中YOLOv8模型精度不足的问题,提出两种改进方法以优化YOLOv8网络模型的火焰检测算法。设计一种改进的EIOU损失函数并引入YOLOv8模型中,通过对比实验确定参数α的最佳取值,使模型的收敛效果和火焰检测精度更佳,增强网络... 针对火焰检测领域中YOLOv8模型精度不足的问题,提出两种改进方法以优化YOLOv8网络模型的火焰检测算法。设计一种改进的EIOU损失函数并引入YOLOv8模型中,通过对比实验确定参数α的最佳取值,使模型的收敛效果和火焰检测精度更佳,增强网络对不同场景下火焰的鲁棒性;引入AttnConv-EMA注意力机制,通过感知权重的非线性优化模型对内容的适应性,增强模型的精度和性能。使用自行建立的火焰检测数据集,基于Pytorch深度学习框架对YOLOv8模型进行训练,并结合不同的损失函数和注意力机制模块对原始的YOLOv8训练模型进行改进。研究结果表明,改进后的YOLOv8模型在火焰检测的检测精度上有显著提升,AttnConv-EMA注意力机制的引入进一步提升了模型的感知能力和精度,满足了火焰检测数据集的检测精度需求。 展开更多
关键词 yolov8 火焰检测 算法优化
在线阅读 下载PDF
面向小型无人机检测应用的改进YOLOv8算法
19
作者 仲元昌 陈宇 +1 位作者 杨子楚 李大林 《湖南大学学报(自然科学版)》 北大核心 2025年第4期57-67,共11页
现有的目标检测算法对小型无人机存在难以有效检测、受复杂环境影响以及网络模型复杂等问题,为此提出一种基于YOLOv8的改进型无人机目标检测算法.首先,针对远距离飞行的无人机目标较小的问题,添加一个融合了浅层特征的新的极小目标检测... 现有的目标检测算法对小型无人机存在难以有效检测、受复杂环境影响以及网络模型复杂等问题,为此提出一种基于YOLOv8的改进型无人机目标检测算法.首先,针对远距离飞行的无人机目标较小的问题,添加一个融合了浅层特征的新的极小目标检测层,同时剔除最大目标检测层,以实现优化目标尺度聚焦并降低网络的复杂度;其次,在Backbone网络中引入GhostConv模块,进一步减少模型的参数量,然后,在Neck网络中融合LSKA模块中的注意力机制,将C2f模块中的Bottleneck用LSKA进行替换,设计全新的C2f-LSKA模块代替Neck中的C2f模块,提高模型对上下文的感知能力和对空间信息的处理能力;最后,采用WIoUv3作为边界损失函数,进一步提高模型精度.实验结果表明,与原模型相比,改进的模型在自建无人机数据集上的精确度P提升了5.0个百分点,召回率R提升了11.9个百分点,mAP@0.5提升了9.5个百分点,改进后的模型参数数量和模型大小分别降低了68.9个百分点和65.1个百分点. 展开更多
关键词 无人机检测 yolov8 大型可分离卷积核 WIoUv3
在线阅读 下载PDF
融合坐标注意力机制的YOLOv3肺结节检测算法 被引量:2
20
作者 王新宇 赵静文 +2 位作者 刘翔 石蕴玉 佘云浪 《电子科技》 2024年第6期1-7,共7页
肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入... 肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。 展开更多
关键词 肺结节 yolov3 扩张卷积 坐标注意力 小目标检测 压缩激发网络 CBAM NWD
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部