期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
改进YOLOv5的复杂场景下水泥路面病害检测
1
作者 张在岩 宋伟东 邬嘉晨 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第1期102-112,共11页
针对国内水泥路面病害检测数据集缺乏、规模小、场景单一,以及深度学习算法在复杂场景下泛化能力不足的问题,提出一种基于改进YOLOv5的路面病害检测算法。收集并构建包含11862张图像的水泥路面病害检测数据集,覆盖9类场景下的3类最常见... 针对国内水泥路面病害检测数据集缺乏、规模小、场景单一,以及深度学习算法在复杂场景下泛化能力不足的问题,提出一种基于改进YOLOv5的路面病害检测算法。收集并构建包含11862张图像的水泥路面病害检测数据集,覆盖9类场景下的3类最常见病害类型;通过融合以IoU度量的K-Means聚类算法和遗传算法获取模型训练的先验锚框;在特征增强阶段,引入轻量级上采样模块(CARAFE),减少特征重组过程中的信息损失;引入顾及通道、高度和宽度维度的多维协同注意力模块(MCA),增强多尺度病害特征的辨别力。实验结果表明:所提算法在保持较快推理速度的前提下,F1分数和平均精确率(mAP)分别达到75.5%和81.6%,优于5种主流的目标检测算法。实例分析表明:基于改进YOLOv5的路面病害检测算法能够满足大规模水泥路面病害智能检测与破损状况评价的实际需求。 展开更多
关键词 水泥路面 深度学习 ISTD-PDD3数据集 病害检测 ISTD-yolo模型
在线阅读 下载PDF
Benchmarking YOLOv5 models for improved human detection in search and rescue missions
2
作者 Namat Bachir Qurban Ali Memon 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期70-80,共11页
Drone or unmanned aerial vehicle(UAV)technology has undergone significant changes.The technology allows UAV to carry out a wide range of tasks with an increasing level of sophistication,since drones can cover a large ... Drone or unmanned aerial vehicle(UAV)technology has undergone significant changes.The technology allows UAV to carry out a wide range of tasks with an increasing level of sophistication,since drones can cover a large area with cameras.Meanwhile,the increasing number of computer vision applications utilizing deep learning provides a unique insight into such applications.The primary target in UAV-based detection applications is humans,yet aerial recordings are not included in the massive datasets used to train object detectors,which makes it necessary to gather the model data from such platforms.You only look once(YOLO)version 4,RetinaNet,faster region-based convolutional neural network(R-CNN),and cascade R-CNN are several well-known detectors that have been studied in the past using a variety of datasets to replicate rescue scenes.Here,we used the search and rescue(SAR)dataset to train the you only look once version 5(YOLOv5)algorithm to validate its speed,accuracy,and low false detection rate.In comparison to YOLOv4 and R-CNN,the highest mean average accuracy of 96.9%is obtained by YOLOv5.For comparison,experimental findings utilizing the SAR and the human rescue imaging database on land(HERIDAL)datasets are presented.The results show that the YOLOv5-based approach is the most successful human detection model for SAR missions. 展开更多
关键词 Unmanned aerial vehicle(UAV) Search and rescue(SAR) You look only once(yolo)model You only look once version 5 (yolov5)
在线阅读 下载PDF
基于增强域数据微调Yolo模型的储气库断层智能识别方法及应用
3
作者 白雪峰 张峰源 +5 位作者 邹环宇 黄发木 李俊伦 赵世杰 张莉 汤继周 《测井技术》 2025年第1期47-56,87,共11页
地质断层作为储层油气聚集和运移的重要通道,是评价储层特征和圈闭性的重要指标,也是储气库构造样式选择的先决条件。然而,从地震图像资料中识别断层存在依赖专家知识、时效性差和多解性强等问题。近年来,以深度学习和大模型技术为代表... 地质断层作为储层油气聚集和运移的重要通道,是评价储层特征和圈闭性的重要指标,也是储气库构造样式选择的先决条件。然而,从地震图像资料中识别断层存在依赖专家知识、时效性差和多解性强等问题。近年来,以深度学习和大模型技术为代表的人工智能方法,凭借其高效的非线性数据分析能力极大地改变了传统工业任务范式。鉴于此,提出一种基于增强域数据微调Yolo(You Only Look Once)模型的断层智能识别方法。首先,针对现场数据稀疏问题,使用基于强化学习的图像自增强算法,通过下游任务需求定向训练优化算法,实现地震体图像最优增强组合方案;然后,根据地质领域专家知识,在三维地震图像中确定能有效表征断块的高阶特征;通过进一步搭建基于预训练Yolo模型的断层识别模型,输入实测-增强图像数据进行领域数据微调训练,从而建立断层智能识别模型;最后,将现场三维地震数据输入到训练好的断层智能识别模型中,提取被分割、识别、标注和计算的断层特征。以中国中部地区某储气库建设运营地块为例,该方法能在不过多依赖人工介入的情况下高效识别储层断层。本研究适用于地震勘探断层识别任务,能为储气库合理选址提供智能化解决方案。 展开更多
关键词 三维地震勘探 断层识别 深度学习 yolo模型 储气库
在线阅读 下载PDF
YOLO神经网络在急性主动脉综合征影像学诊断及鉴别诊断中的应用价值
4
作者 康梦阳 赵洋 +2 位作者 池烽 李尤 田红燕 《西安交通大学学报(医学版)》 北大核心 2025年第2期317-322,共6页
目的建立急性主动脉综合征(acute aortic syndrome,AAS)计算机断层扫描血管造影(computed tomography angiography,CTA)图像的人工智能(artificial intelligence,AI)诊断系统,并评价其对AAS诊断及疾病亚组间鉴别诊断的效能。方法收集201... 目的建立急性主动脉综合征(acute aortic syndrome,AAS)计算机断层扫描血管造影(computed tomography angiography,CTA)图像的人工智能(artificial intelligence,AI)诊断系统,并评价其对AAS诊断及疾病亚组间鉴别诊断的效能。方法收集2016年6月至2022年6月于西安交通大学第一附属医院周围血管科确诊为AAS患者的CTA图像序列,主要包括主动脉夹层(aortic dissection,AD)、壁内血肿(intramural hematoma,IMH)和穿透性动脉粥样硬化性溃疡(penetrating atherosclerotic ulcer,PAU)。经过严格的纳入和排除标准,最终截取并筛选有效断层图像2057张。以正常人主动脉CTA图像为对照组,通过YOLO v7神经网络对AAS患者的CTA图像进行诊断和亚组间的鉴别诊断,并评价诊断效能。结果基于YOLO v7网络构建的智能诊断系统可有效识别AAS患者,灵敏度为98.72%,特异度为83.10%,阳性预测值97.82%,阴性预测值为89.40%,总准确度达96.92%。对AD、IMH及PAU疾病亚组间鉴别诊断的总准确率达85.58%。该系统对于AAS的诊断结果总准确率高于疾病亚组间鉴别诊断结果(P<0.05)。结论基于YOLO v7构建的AAS智能诊断系统可满足疾病诊断的标准,但对于AAS疾病各亚组间的鉴别诊断,仍需要更大的图像数据库和深度学习网络进一步研究。 展开更多
关键词 人工智能(AI) yolo神经网络 急性主动脉综合征(AAS) 图像识别 诊断模型
在线阅读 下载PDF
YOLO系列算法在电力行业目标检测领域的应用与发展趋势
5
作者 张豪 高林 +1 位作者 龚宇翔 伏德粟 《湖北民族大学学报(自然科学版)》 2025年第1期86-93,共8页
为了研究你只看一次(you only look once, YOLO)系列算法在电力行业目标检测领域的应用情况,分析其未来在该行业的发展趋势。首先分析了较新的YOLO版本10(YOLO version 10,YOLOv10)算法的网络结构,然后探讨了YOLO系列算法在电力行业从... 为了研究你只看一次(you only look once, YOLO)系列算法在电力行业目标检测领域的应用情况,分析其未来在该行业的发展趋势。首先分析了较新的YOLO版本10(YOLO version 10,YOLOv10)算法的网络结构,然后探讨了YOLO系列算法在电力行业从发电、输电、变电到用电环节中目标检测的应用,最后从潜在改进方向、与大模型的融合2方面分析了YOLO系列算法的发展趋势。研究发现,YOLO系列算法在检测速度和精度方面取得了明显进展,特别是在电力行业的缺陷检测、故障检测、设备监控、智慧管理、安全监测等方面表现出极大的潜力;但在复杂背景下,该系列算法仍存在检测精度不高的问题。YOLO系列算法要在电力行业中实现更广泛的应用,还需进一步优化算法的速度与精度以应对实际应用中的挑战。 展开更多
关键词 人工智能 yolo系列算法 电力行业 目标检测 改进模型 未来趋势
在线阅读 下载PDF
基于昇腾AI处理器的轻量化MNG-YOLO模型研究
6
作者 赵月爱 沈帅杰 +1 位作者 王智瑜 王玲 《电子器件》 CAS 2024年第5期1193-1200,共8页
随着目标检测神经网络算法精度不断提升,算法的参数量以及计算量都有着较高的增长,导致模型实际应用部署困难,因此对神经网络模型进行轻量化,减少模型的参数量和计算量对模型部署在边缘设备上是至关重要的。昇腾AI处理器是华为推出的一... 随着目标检测神经网络算法精度不断提升,算法的参数量以及计算量都有着较高的增长,导致模型实际应用部署困难,因此对神经网络模型进行轻量化,减少模型的参数量和计算量对模型部署在边缘设备上是至关重要的。昇腾AI处理器是华为推出的一款专用于神经网络加速的芯片,为充分发挥昇腾AI处理器的优势并解决算法模型较为庞大的问题,基于此平台提出一种轻量化目标检测模型MNG-YOLO,对YOLO模型采用轻量级主干网络和Ghost卷积以减小模型大小,添加NAM注意力模块和Mish激活函数提升模型准确率。实验结果表明,MNG-YOLO模型相比于原始模型参数量以及计算量均减少约75%,参数量从7 015 519个减少至1 739 799个,计算量从15.8 GFLOPs减少至3.5 GFLOPs,模型精确度也由95.9%提升至97.5%。同时,在昇腾AI处理器上的推理速度达到205 FPS,远超实时性检测的速度要求。 展开更多
关键词 目标检测 yolo模型 昇腾AI处理器 模型轻量化
在线阅读 下载PDF
基于YOLO模型的车流量实时采集系统研究
7
作者 王金环 李宝敏 《计算机技术与发展》 2024年第9期209-214,共6页
对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车... 对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车流量信息的准确性和及时性,利用现有的计算机技术设计一种基于YOLO模型的车流量实时采集系统。该系统基于YOLO视觉检测模型,采用DeepSORT算法对检测到的目标车辆进行跟踪识别、判断车辆的运行状态、实现当前路段的车流量统计、对已记录车流量信息进行可视化展示以及数据输出等。该系统可以有效地代替传统消耗人力的死板工作,实现自动化数据收集以及道路交通情况的快速监测。该系统操作简单,交互性强,为城市的交通管理和交通规划提供准确实时的信息数据。 展开更多
关键词 目标检测 目标跟踪算法 数据处理 yolo模型 车流量 实时采集
在线阅读 下载PDF
基于轻量化YOLO v8s-GD的自然环境下百香果快速检测模型
8
作者 罗志聪 何陈涛 +2 位作者 陈登捷 李鹏博 孙奇燕 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期291-300,共10页
为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融... 为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融合能力和模型泛化能力;通过基于层自适应幅度的剪枝(LAMP)修剪模型,损失一定精度换取减小模型体积,减少模型参数量,以实现在嵌入式设备上快速检测;运用知识蒸馏学习策略弥补因剪枝而损失的检测精度,提高模型检测性能。实验结果表明,对于自然环境下采集的百香果数据集,改进后模型参数量和内存占用量相比原YOLO v8s基线模型分别降低63.88%和62.10%,精确率(Precision)和平均精度(AP)相较于原模型分别提高0.9、2.3个百分点,优于其他对比模型。在Jetson Nano和Jetson Tx2嵌入式设备上实时检测帧率(FPS)分别为5.78、19.38 f/s,为原模型的1.93、1.24倍。因此,本文提出的改进后模型能够有效检测复杂环境下百香果目标,为实际场景中百香果自动采摘等移动端检测设备部署和应用提供理论和技术支持。 展开更多
关键词 百香果 yolo v8s 轻量化 检测模型 聚集和分发机制
在线阅读 下载PDF
结合特征重用与重建的YOLO绝缘子检测方法 被引量:3
9
作者 杨露露 马萍 +3 位作者 王聪 李新凯 孟月 张宏立 《计算机工程》 CAS CSCD 北大核心 2024年第7期303-313,共11页
针对基于深度学习的绝缘子缺陷检测方法存在泛化性能低、难以识别复杂背景下的绝缘子等问题,从特征提取和融合角度出发,提出一种结合特征重用与重建的YOLO(YOLO-RR)模型的绝缘子缺陷检测方法。首先,在特征提取阶段,以DenseNet为基础构建... 针对基于深度学习的绝缘子缺陷检测方法存在泛化性能低、难以识别复杂背景下的绝缘子等问题,从特征提取和融合角度出发,提出一种结合特征重用与重建的YOLO(YOLO-RR)模型的绝缘子缺陷检测方法。首先,在特征提取阶段,以DenseNet为基础构建dense35网络作为主干网络,通过特征的重用增加对特征细节的感知能力,提升了模型在低饱和度和低对比度成像情况下的检测精度,并降低了网络参数量。其次,在特征融合阶段,提出基于沙漏模块的双向特征金字塔网络(H-BiFPN)结构进行不同尺度特征间的双向融合,通过特征重建和融合丰富了不同尺度的特征信息,解决了连续卷积下小目标信息丢失的问题,提升了对小目标的检测精度。最后,使用Wise-交并比(WIoU)损失函数优化模型,通过重点关注普通锚框使预测更加精准。在扩充后的中国输电线路绝缘子数据集(CPLID)上的实验结果表明,YOLO-RR模型识别率达到93.6%,网络参数量压缩至5.16×10^(6),优于对比模型,能够满足绝缘子缺陷定位的准确性和实时性要求,同时在背景干扰较大、受光照影响的成像上也有很好的检测效果。 展开更多
关键词 绝缘子检测 yolo模型 特征重用 特征重建 轻量化 智能巡检
在线阅读 下载PDF
基于YOLO模型的堤坝管涌监测智能识别方法 被引量:3
10
作者 陆公义 欧阳鹏 +2 位作者 程赟 羌予践 华亮 《水利水电科技进展》 CSCD 北大核心 2024年第1期89-94,共6页
针对堤坝管涌现象的监测识别问题,提出一种基于YOLO模型的堤坝管涌识别方法。该方法通过引入改进的残差块及替换模型的激活函数来提升YOLO v3模型的网络性能,构建了基于堤坝管涌感兴趣区域提取的Piping YOLO模型来提取管涌感兴趣区域,... 针对堤坝管涌现象的监测识别问题,提出一种基于YOLO模型的堤坝管涌识别方法。该方法通过引入改进的残差块及替换模型的激活函数来提升YOLO v3模型的网络性能,构建了基于堤坝管涌感兴趣区域提取的Piping YOLO模型来提取管涌感兴趣区域,并采用二维主成分分析方法提取管涌现象的特征,将其作为多权值神经网络的输入,经训练后实现管涌状态的分类识别。基于自主搭建的管涌渗漏试验平台建立了数据集并进行了试验验证,结果表明,提出的方法能有效识别堤坝管涌现象,在堤坝管涌无人巡检领域具有一定的应用前景。 展开更多
关键词 堤坝管涌 感兴趣区域 yolo v3模型 多权值神经网络
在线阅读 下载PDF
基于改进YOLOv5s模型的自然场景中绿色柑橘果实检测 被引量:1
11
作者 吕强 林刚 +3 位作者 蒋杰 王明之 张皓杨 易时来 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期147-154,共8页
针对未成熟柑橘果实智能检测存在精度低、模型大的问题,该研究提出了一种基于YOLOv5s改进的绿色柑橘检测算法模型YOLO-GC,实现对复杂自然环境中果实的实时准确检测。首先,针对YOLOv5s网络模型较大且难以部署的问题,以轻量级GhostNet网... 针对未成熟柑橘果实智能检测存在精度低、模型大的问题,该研究提出了一种基于YOLOv5s改进的绿色柑橘检测算法模型YOLO-GC,实现对复杂自然环境中果实的实时准确检测。首先,针对YOLOv5s网络模型较大且难以部署的问题,以轻量级GhostNet网络替换原始的骨干网络,同时为减小模型轻量化后精度下降的影响和提高对绿色柑橘特征的关注度,嵌入全局注意力机制(global attention mechanism,GAM)增强网络在复杂环境下对果实特征的提取能力;其次,为了改善密集与小目标果实的检测效果,引入BiFPN(bi-directional feature pyramid network)架构进行多尺度的加权特征融合;最后,为减少果实与枝叶遮挡、重叠造成的漏检,采用GIoU(generalized intersection over union)损失函数结合Soft-NMS(soft-non-maximum suppression)算法优化边界框回归机制。试验结果表明:相较于YOLOv5s,YOLO-GC的权重模型内存减小了53.9%,参数量减少了55.2%,平均精度AP_(0.5)提升了1.2个百分点,平均推理时长减少46.2%。YOLO-GC模型的综合检测性能优于YOLOv8等7种常用网络模型,在安卓手机APP中检测准确率达到97.2%,推理时长减少了85.8%。研究表明,该研究模型为复杂环境中绿色果实检测及模型部署应用提供了技术支撑。 展开更多
关键词 柑橘 图像识别 yolo 绿色果实 轻量化模型 移动部署
在线阅读 下载PDF
轻量化YOLO-v7的数显仪表检测及读数 被引量:3
12
作者 章芮宁 闫坤 叶进 《计算机工程与应用》 CSCD 北大核心 2024年第8期192-201,共10页
由于较大的参数体量和较高的计算复杂度,通用检测及识别模型直接在移动端部署的难度较高。为解决这个困难,研究了移动设备上使用计算机视觉的仪表检测及读数方法。针对实际工业生产环境下检测及识别的需求,基于YOLO-v7重新设计了轻量化... 由于较大的参数体量和较高的计算复杂度,通用检测及识别模型直接在移动端部署的难度较高。为解决这个困难,研究了移动设备上使用计算机视觉的仪表检测及读数方法。针对实际工业生产环境下检测及识别的需求,基于YOLO-v7重新设计了轻量化的仪表检测网络以及字符检测及识别网络。利用深度可分离卷积进一步降低计算复杂度,压缩模型大小。采用K-means++聚类算法加遗传算法自动产生初始锚框。使用通道剪枝,再一次压缩模型。实验结果证明,专用网络模型设计、深度可分离卷积以及通道剪枝对减少模型参数体量和降低算力需求具有显著效果。参数数量相较于原始YOLO-v7模型均下降了99.67%,模型算力需求均降至0.3 GFLOPs,下降了99.71%。实验中平均图片检测时间为10.7 ms。各网络的平均精准度(mAP0.5)达到了99.63%和99.53%。系统整体读数精确度达98.44%。 展开更多
关键词 数显仪表 yolo-v7 深度可分离卷积 模型压缩 通道剪枝
在线阅读 下载PDF
基于立体视觉和YOLO深度学习框架的焊缝识别与机器人路径规划算法
13
作者 马佳玮 孙菁伯 +2 位作者 迟关心 张广军 李鑫磊 《焊接学报》 EI CAS CSCD 北大核心 2024年第11期45-49,共5页
为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别... 为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别焊件所在的ROI区域(region of interest,ROI),模型识别精度为99.5%,从而实现快速剔除背景点云,并基于RANSAC平面拟合、欧式聚类等点云处理算法,对ROI区域的三维点云进行焊缝空间位置的精细识别;最后根据手眼标定结果转化为机器人用户坐标系下的焊接轨迹.结果表明,文中所开发的算法可实现随机摆放的焊缝自动识别和焊接机器人路径规划,生成的轨迹与人工示教轨迹效果相当,偏差在0.5 mm以内. 展开更多
关键词 焊缝智能识别 机器人路径规划 立体视觉 yolo深度学习 点云处理
在线阅读 下载PDF
改进YOLO v4模型在版纳微型猪只行为识别中的研究
14
作者 杨宏宇 陈立畅 +1 位作者 谢小龙 张佳进 《黑龙江畜牧兽医》 CAS 北大核心 2024年第19期46-54,118,119,共11页
为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差... 为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差网络结构作为改进YOLO v4模型的主干网络,并引入由深度可分离卷积、批标准化(BN)、Hard Swish激活函数组成的CH模块,代替主干网络中的传统卷积,提升模型检测精度的同时降低参数量;在PANet多尺度特征融合结构中引入双重3层1×1和3×3交替卷积运算替代上、下原采样方式,构成DPANet网络结构,增强对猪只行为图片中细节特征的提取,提高计算效率;基于参数共享理念与二阶段训练的迁移学习方法,优化训练过程以显著缩短训练时间,加速模型的收敛速度。结果表明:改进YOLO v4模型对猪只行为数据集的训练时间仅为6 h,而原模型训练时间则需要19 h;改进YOLO v4模型识别平均精度为93.97%,召回率为96.27%、参数量为0.26×10^(8),与Faster-RCNN、SSD、YOLO v4模型相比,平均精度与召回率分别提升8.88,15.36,8.68个百分点及16.09,41.34,30.40个百分点,参数量最大减少1.11×10^(8)。改进YOLO v4模型对识别爬栏探究、站立行走、进食、躺卧4种行为的准确率达到了98%、88%、92%、97%,与其他3种模型相比,站立行走、进食两种行为的识别效果远大于其他模型。说明改进YOLO v4模型在复杂场景下具有良好的准确性和有效性,能够精准识别猪只的不同行为。 展开更多
关键词 卷积神经网络 图像识别 多目标检测 yolo v4模型 版纳微型猪
原文传递
基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型
15
作者 王珍妮 须月萍 +2 位作者 夏开建 徐晓丹 顾丽华 《中国全科医学》 CAS 北大核心 2024年第36期4582-4590,共9页
背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的... 背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的实时性、准确性和客观性。方法选取常熟市第一人民医院压疮电子化管理系统中2021年1月—2024年2月的693张PI图像,将图像随机划分为训练集(551张)和测试集(142张),并按照2019年美国压疮咨询委员会(NPUAP)制订的PI预防和治疗指南分为6期,包括:Ⅰ期154张、Ⅱ期188张、Ⅲ期160张、Ⅳ期82张、深部组织损伤期57张、不可分期52张。利用基于5种不同版本的YOLOv8[nano(n)、small(s)、medium(m)、large(l)和extra large(x)]神经网络和迁移学习,建立针对PI的深度学习目标检测模型。模型评价指标包括精确度、准确率、灵敏度、特异度及检测速度等。最后,通过Ultralytics Hub平台将模型部署到手机应用程序(App)中,实现AI模型在临床工作中的应用。结果在对包含142张PI图像的测试集进行评估时,YOLOv8l版本在确保高精确度(0.827)的同时,也展现了较快的推理速度(68.49帧/s),与其他YOLO版本相比,在精确度与速度之间取得了最佳的平衡。具体而言,其在所有类别上的整体准确率为93.18%,灵敏度为76.52%,特异度为96.29%,假阳性率为3.72%。在6个PI分期中,模型预测Ⅰ期的准确率最高,达到95.97%;预测Ⅱ期、Ⅲ期、Ⅳ期、深部组织损伤期、不可分期分别取得了91.28%、91.28%、91.95%、95.30%和93.29%的准确率。就处理速度而言,YOLOv8l处理142张图像的总耗时为2.07 s,平均每秒可处理68.49张PI图像。结论基于YOLOv8l网络的AI模型能够快速、准确地对PI进行检测和分期。将该模型部署到手机App中,能够在临床实践中便携使用,具有很大的临床应用潜力。 展开更多
关键词 压力性损伤 人工智能 深度学习 yolo 目标检测 神经网络模型 APP
在线阅读 下载PDF
基于图像增强与GC-YOLO v5s的水下环境河蟹识别轻量化模型研究
16
作者 张铮 鲁祥 胡庆松 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期124-131,374,共9页
利用机器视觉技术识别水下河蟹目标是实现河蟹养殖装备智能化的有效途径之一。针对水下环境目标识别困难、河蟹包含特征信息少、主流的目标检测模型复杂度高等问题,在YOLO v5s的基础上提出了一种适用于水下环境的轻量级河蟹识别模型GC-Y... 利用机器视觉技术识别水下河蟹目标是实现河蟹养殖装备智能化的有效途径之一。针对水下环境目标识别困难、河蟹包含特征信息少、主流的目标检测模型复杂度高等问题,在YOLO v5s的基础上提出了一种适用于水下环境的轻量级河蟹识别模型GC-YOLO v5s(GhostNetV2-CBAM-YOLO v5s)。利用改进的图像增强算法对水下河蟹图像进行预处理以改善其质量;为降低模型复杂度,提出了基于GhostNetV2的G3模块以改进模型的特征提取网络,并利用幻影卷积进一步轻量化模型;为了优化模型的河蟹特征学习能力,在Neck层和Head层之间引入卷积块注意力模块(Convolution block attention module,CBAM)。实验结果表明,该模型测试集的平均精度均值(Mean average precision,mAP)、召回率和精确率分别为95.61%、97.03%和96.94%,较YOLO v5s分别提升2.80、2.25、2.28个百分点;而GC-YOLO v5s的参数量、浮点运算量和模型内存占用量仅为YOLO v5s的69.1%、56.3%和58.3%。通过实验对比,该模型在识别精度和模型复杂度上优于其他主流目标检测模型;识别速度仅次于YOLO v5s,可达到104 f/s。 展开更多
关键词 水产养殖 河蟹识别模型 图像增强 yolo v5s 轻量化
在线阅读 下载PDF
基于改进YOLO v5方法的电力设备红外图像识别方法 被引量:4
17
作者 王小栋 吕通发 +3 位作者 鲍明正 何永春 辛鹏 吴涛 《红外技术》 CSCD 北大核心 2024年第6期722-727,共6页
为解决电力设备红外图像有遮挡、分类不准确和特征提取不充分等问题,本文提出一种改进的YOLOv5识别方法。首先通过迁移学习的方法,将电力设备可见光图像和红外图像相融合,接着将Triplet注意力机制嵌入到特征提取网络中,对关键特征信息... 为解决电力设备红外图像有遮挡、分类不准确和特征提取不充分等问题,本文提出一种改进的YOLOv5识别方法。首先通过迁移学习的方法,将电力设备可见光图像和红外图像相融合,接着将Triplet注意力机制嵌入到特征提取网络中,对关键特征信息进行加权强化,最后通过多尺度融合的方法实现不同目标的识别。研究结果表明:相对于Faster R-CNN和SSD,本文方法的识别精度和识别效率最高,且适应于复杂背景下的多类型电力设备识别;本文方法的模型仅4.1 MB,相较于SSD缩减了80.8%,实现了网络模型的轻量化。本文方法为电力设备红外图像智能检测提供了新颖可行的方案。 展开更多
关键词 电力设备 红外图像 迁移学习 yolo v5s 注意力机制 轻量化模型
在线阅读 下载PDF
基于YOLO网络模型的多类别标签缺陷检测
18
作者 孟令波 杨程午 李亚彬 《无损检测》 CAS 2024年第11期67-72,90,共7页
由于热转印滚筒温度的变化,热转印标签在转印的过程中会出现热转印标签褶皱、脱模不完全等问题。针对某些较大标签存在缺陷种类较多及未知缺陷的问题,提出了一种基于YOLO网络模型的多类别标签缺陷检测方法,将自适应匹配缺陷检测方法与... 由于热转印滚筒温度的变化,热转印标签在转印的过程中会出现热转印标签褶皱、脱模不完全等问题。针对某些较大标签存在缺陷种类较多及未知缺陷的问题,提出了一种基于YOLO网络模型的多类别标签缺陷检测方法,将自适应匹配缺陷检测方法与改进的YOLO网络模型相结合,增加注意力机制模块以提高小目标缺陷的检测能力。在处理过程中,首先,对不同区域内的标签进行快速定位及预处理;然后,针对不同区域使用不同的检测方法进行检测;最后,将不同区域结果融合,判断检测结果。试验结果表明,基于YOLO网络模型的多类别标签缺陷的检测方法能够有效进行热转印标签的缺陷检测,检测准确率达98%,能够满足实际的生产要求。 展开更多
关键词 多类别 热转印标签 传统图像处理 yolo网络模型 注意力机制
在线阅读 下载PDF
基于YOLO v5的探地雷达地下空洞与管线图像自动识别技术
19
作者 江路路 尹轶 +1 位作者 孟姿含 许佳毅 《国防交通工程与技术》 2024年第5期7-11,共5页
为了提高探地雷达图像中的病害自动识别的效率和准确度,通过现场实测和正演模拟的方法获得并扩充训练数据集,用于训练YOLO v5模型,以实现对探地雷达图像中地下空洞与管线的快速准确分类。结果表明:①YOLO v5模型能较好的定位和区分地下... 为了提高探地雷达图像中的病害自动识别的效率和准确度,通过现场实测和正演模拟的方法获得并扩充训练数据集,用于训练YOLO v5模型,以实现对探地雷达图像中地下空洞与管线的快速准确分类。结果表明:①YOLO v5模型能较好的定位和区分地下空洞、金属管线和混凝土管线三类地下目标。②使用正演模拟对数据集增广能提升模型的精准度和召回率,但数据增广比例不宜过高。③由于混凝土相对介电常数更接近土壤,因此混凝土管道的识别准确率较低。研究可为地下病害检测和识别工作提供一定参考。 展开更多
关键词 探地雷达 图像识别 yolo v5模型 地下目标探测 数据增广 病害检测
在线阅读 下载PDF
基于改进YOLOv8的输电线路故障识别方法
20
作者 李宁 程旭 +2 位作者 卢景才 梁河雷 时洪刚 《河北电力技术》 2024年第4期56-63,共8页
针对输电线路巡检难度大且巡检信息处理可靠性不佳等问题,提出了一种基于改进YOLOv8的输电线路故障识别方法。首先,设计智能化单兵巡检装备,包括智能巡检头盔和智能信息装备服,并通过无人机获取输电线路的实时运行情况。然后,提出一种... 针对输电线路巡检难度大且巡检信息处理可靠性不佳等问题,提出了一种基于改进YOLOv8的输电线路故障识别方法。首先,设计智能化单兵巡检装备,包括智能巡检头盔和智能信息装备服,并通过无人机获取输电线路的实时运行情况。然后,提出一种增量八叉树空间检索算法用于激光雷达等图像信息的处理,得到输电线路全景图像。最后,构建改进C2f模块、残差注意力模块以及改进损失函数优化YOLOv8模型,将其用于全景图像的学习,从而得到输电线路的故障类型。基于Pytorch平台对所提方法进行实验分析,结果表明,其识别结果的平均精度均值达到了92.03%,且识别时间仅为28ms,能够满足智能化单兵巡检装备的工作需求。 展开更多
关键词 智能化单兵巡检装备 增量八叉树空间检索算法 全景图像 输电线路 yolov8模型 故障识别
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部