期刊文献+
共找到45,398篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Birdcage Buckling in the Armor Wire of A Damaged Umbilical Cable Under Compression and Bending Cyclic Load
1
作者 CHEN Si-yuan DENG Yu +2 位作者 LIANG Xu DENG Xue-jiao WANG Zhen-kui 《China Ocean Engineering》 2025年第1期86-99,共14页
Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cy... Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling. 展开更多
关键词 umbilical cable armor wire birdcage buckling bending cycle damaged sheath
在线阅读 下载PDF
Polypropylene-based blend with enhanced breakdown strength under gamma-ray irradiation for cable insulation
2
作者 Bai-Xin Liu Yu Gao +5 位作者 Jing Li Chen-Yi Guo Bo-Sen Si Jun-Guo Gao Yu Chen Bo-Xue Du 《Nuclear Science and Techniques》 2025年第1期35-48,共14页
This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-bas... This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-based elastomer(PBE)at concentrations ranging from 0 to 50 wt%,underwent a melt blending process and subsequent cobalt-60 gamma-ray irradiation with doses ranging from 0 to 250 kGy.Electrical conductivity,trap distribution,and alternating(AC)breakdown strength were chosen to assess the insulation performance.These results indicate that the addition of PBE significantly improves the electrical properties of PP under irradiation.For PP,the electrical conductivity increased with irradiation,whereas the trap depth and breakdown strength decreased sharply.Conversely,for the blend,these changes initially exhibit opposite trends.When the irradiation was increased to 250 kGy,the AC breakdown strength of the blend improved by more than 21%compared to that of PP.The physical and chemical structures of the samples were investigated to explore the improvement mechanisms.The results offer insights into the design of new cable-insulation materials suitable for NPPs. 展开更多
关键词 Nuclear power plant cable insulation POLYPROPYLENE Electrical properties Gamma-ray irradiation
在线阅读 下载PDF
高速数据传送与快速充电同步进行 Supra Cables Premium USB 3.2 Gen2
3
《视听前线》 2025年第1期56-56,共1页
为全面切合新世代高清影音数据传输需求,依靠上乘质量力压同级对手的瑞典苏霸Supra Cables,正式推出新世代USB3.2规格线材,既拥有WGbps数据传输速度,还支持最高100WPD的PPS快充功能,难以匹敌的超凡性价比更是令人喜出望外。
关键词 数据传输速度 数据传送 USB 快速充电 cable 新世代
在线阅读 下载PDF
Experimental study on progressive interfacial mechanical behaviors using fiber optic sensing cable in frozen soil
4
作者 Tian-Xiang Liu Hong-Hu Zhu +4 位作者 Qi Li Bing Wu Hao-Jie Li Le-Le Hu Du-Min Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1828-1846,共19页
Frost heave and thaw settlement in cold regions pose a significant threat to engineering construction.Optical frequency domain reflectometry(OFDR)based on Rayleigh scattering can be applied to monitor ground deformati... Frost heave and thaw settlement in cold regions pose a significant threat to engineering construction.Optical frequency domain reflectometry(OFDR)based on Rayleigh scattering can be applied to monitor ground deformation in frozen soil areas,where the interface behavior of soil-embedded fiber optic sensors governs the monitoring accuracy.In this paper,a series of pullout tests were conducted on fiber optic(FO)cables embedded in the frozen soil to investigate the cable‒soil interface behavior.An experimental study was performed on interaction effects,particularly focused on the water content of unfrozen soil,freezing duration,and differential distribution of water content in frozen soil.The highresolution axial strains of FO cables were obtained using a sensing interrogator,and were used to calculate the interface shear stress.The interfacial mechanical response was analytically modeled using the ideal elasto‒plastic and softening constitutive models.Three freezing periods,correlating with the phase change process between ice and water,were analyzed.The results shows that the freezing effect can amplify the peak shear stress at the cable-soil interface by eight times.A criterion for the interface coupling states was proposed by normalizing the pullout force‒displacement information.Additionally,the applicability of existing theoretical models was discussed by comparing the results of theoretical back‒calculations with experimental measurements.This study provides new insights into the progressive interfacial failure behavior between strain sensing cable and frozen soil,which can be used to assist the interpretation of FO monitoring results of frozen soil deformation. 展开更多
关键词 Geotechnical monitoring Pullout test cable‒soil interface Progressive failure Frozen soil
在线阅读 下载PDF
Yielding performance of compact yielding anchor cable in working state:Analytical theory and experimental evaluation of yielding resistance enhancement effect
5
作者 Zhenyu Wang Bo Wang +2 位作者 Xinxin Guo Jinjin Li Zhenwang Ma 《International Journal of Mining Science and Technology》 2025年第1期101-120,共20页
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ... To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters. 展开更多
关键词 Compact yielding anchor cables Working state Yielding resistance enhancement effect Yielding mechanical performance Pull-out test
在线阅读 下载PDF
Deformation mechanism and NPR anchor cable truss coupling support in tunnel through fault fracture zone
6
作者 HUO Shusen TAO Zhigang +2 位作者 HE Manchao WANG Fengnian XU Chuang 《Journal of Mountain Science》 2025年第1期354-374,共21页
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m... To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions. 展开更多
关键词 Fault fracture zone Large deformation Nuclear magnetic resonance NPR anchor cable truss support Coupled simulation
在线阅读 下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
7
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
在线阅读 下载PDF
Seismic stability of expansive soil slopes reinforced by anchor cables using a modified horizontal slice method 被引量:1
8
作者 Wang Long Chen Guoxing +3 位作者 Hu Wei Zhou Enquan Feng Jianxue Huang Anping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期377-387,共11页
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak... Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa. 展开更多
关键词 limit analysis expansive soil slope matric suction anchor cable pseudo-dynamic analysis
在线阅读 下载PDF
Mechanism of high-preload support based on the NPR anchor cable in layered soft rock tunnels 被引量:1
9
作者 SUI Qiru HE Manchao +3 位作者 SHI Mengfan TAO Zhigang ZHAO Feifei ZHANG Xiaoyu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1403-1418,共16页
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d... The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data. 展开更多
关键词 Tunnel engineering Soft rock High-preload support NPR anchor cables
在线阅读 下载PDF
A new deformable cable for rock support in high stress tunnel:Steel pipe shrinkable energy-absorbing cable
10
作者 Xuezhen Wu Mingzhu Zhao +5 位作者 Qing Ye Yujing Jiang Tao Deng Hanfang Zheng Gang Wang Zhenchang Guan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1083-1093,共11页
High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large deformation in soft rock.The applied support system under high in-situ stress conditions should be able to carry hig... High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large deformation in soft rock.The applied support system under high in-situ stress conditions should be able to carry high load and also accommodate large deformation without experiencing severe damage.In this paper,a specially designed energy-absorbing component for rock bolt and cable that can solve the above problems was proposed.The energy-absorbing component can provide support resistance by plastic deformation of the metal including constraint annulus and compression pipe.For practical engineering,two forms were proposed.One was installed in the surrounding rock by reaming,and the other was installed directly outside the surrounding rock.During the dilation of the surrounding rock,the relative displacement of constraint annulus and compression pipe occurs,resulting in deformation resistance.Deformation resistance is transmitted to the rock bolt or cable,providing support resistance.The lab test and numerical simulation showed that the energy-absorbing component can perfectly achieve the large deformation effect,the deformation amount is as high as 694 mm,and the bearing capacity is stable at 367 kN.The field application tests were carried out in the mining roadway of Xinjulong coal mine,and the results showed that the new type of cable can ensure itself not to break under the condition of large deformation of the surrounding rock.The energy-absorbing component has the superiorities of performing large constant resistance and controllable deformation to effectively control the unpredictable disasters such as large deformation in soft rock and rock burst in hard rock encountered in deep strata. 展开更多
关键词 Energy-absorbing cable Numerical simulation Lab test Load capacity Ultimate displacement
在线阅读 下载PDF
Global Dynamic Responses and Progressive Failure of Submerged Floating Tunnel Under Cable Breakage Conditions
11
作者 ZHOU Xiang-bo QIAO Dong-sheng +3 位作者 WANG Ming TANG Guo-qiang LU Lin OU Jinping 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期676-688,共13页
The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducin... The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducing a transient heave response within the structure along with a transient increase in cable tension experienced by adjacent cables.In more severe cases,this may even lead to a progressive failure culminating in the global destruction of the SFT.This study used ANSYS/AQWA to establish a numerical model of the entire length SFT for the hydrodynamic response analysis,and conducted a coupled calculation of the dynamic responses of the SFT-mooring line model based on Orca Flex to study the global dynamic responses of the SFT at the moment of cable breakage and the redistribution of cable internal forces.The most unfavorable position for SFT cable breakage was identified,the influence mechanism of cable breakage at different positions on the global dynamic response was revealed,and the progressive chain failure pattern caused by localized cable breakage are also clarified. 展开更多
关键词 submerged floating tunnel cable breakage global dynamic responses progressive failure
在线阅读 下载PDF
Analytical modeling and approaches of multihelix cables incorporating with interwire mutual contacts
12
作者 Zhichao ZHANG Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1633-1654,共22页
This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable su... This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses. 展开更多
关键词 wordshierarchical multihelix cable mutual contact effect mechanical response effective stiffness
在线阅读 下载PDF
Reliability analysis of carbon fiber rod-reinforced umbilical cable under tension using an improved sampling method
13
作者 Yu Zhang Hong-Yu Zhang +2 位作者 Ran Xia Si-Ao Jiang Fang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2769-2778,共10页
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is... The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method. 展开更多
关键词 Umbilical cable Carbon fiber rod Failure analysis Response surface method Reliability
在线阅读 下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
14
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
在线阅读 下载PDF
Negative Poisson's ratio anchor cable support for fault tunnels with different inclination angles under earthquake
15
作者 YANG Xiaojie ZHANG Xiaoyu +4 位作者 FENG Yuxiang ZHAO Yi TAO Zhigang WEN Lifan TIE Jingjing 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3814-3831,共18页
It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the inf... It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones. 展开更多
关键词 Different dip angles Fault areas NPR anchor cable Physical model test
在线阅读 下载PDF
Exploring the feasibility of prestressed anchor cables as an alternative to temporary support in the excavation of super-large-span tunnel
16
作者 Shunhua Zhou Yuyin Jin +3 位作者 Zhiyao Tian Chunhua Zou Heming Zhao Zengrun Miao 《Railway Engineering Science》 EI 2024年第3期344-360,共17页
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit... Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems. 展开更多
关键词 Super-large-span tunnel Construction safety Sequential excavation method Shed-frame principle Prestressed anchor cables
在线阅读 下载PDF
Three-dimensional limit variation analysis on the ultimate pullout capacity of the anchor cables based on the Hoek-Brown failure criterion
17
作者 ZUO Shi ZHAO Lianheng HU Shihong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1036-1047,共12页
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat... Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method. 展开更多
关键词 Anchor cable Ultimate pullout capacity(UPC) Failure model Variation analysis Hoek-Brown failure criterion
在线阅读 下载PDF
Investigation of the Structure Design and Heat Transfer Characteristics of Heating Cable
18
作者 Lihui Zhang Huichuang Yang +4 位作者 Weigang Li Jixin Xu Wei Zhou DonghuiWen Yanmin Zhang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1477-1492,共16页
Indoor heating with an electrical heating cable,which has no harmful emissions to the environment,is an attractive way for radiant floor heating.To improve the heat transfer efficiency,a novel structure of the heating... Indoor heating with an electrical heating cable,which has no harmful emissions to the environment,is an attractive way for radiant floor heating.To improve the heat transfer efficiency,a novel structure of the heating cable was designed by proposing the concept of the aluminum finned sheath.The transient heat transfer model from the embedded heating cables to the floor is established to validate the feasibility of this novel cable.The effects of the fin number and shape on the cable’s temperature and heat flux distribution were analyzed.The results show that,with the specific volume of the sheath,increasing the number of fins can enhance the thermal diffusion capacity of the heating cable and reduce its temperature.Rectangular fins exhibit higher performance for heat dissipation than triangular fins due to their larger surface area.The simulation result shows that the floor temperature above the cable rises from 5°C to 22.5°C after a 2-h heating process,which was validated with experimental results.The results and suggestions can provide reference to guide the design of the heating cable. 展开更多
关键词 Heating cable aluminum sheath fin structure thermal simulation
在线阅读 下载PDF
Research on the monitoring system for induced voltage and ground current of 27.5 kV cable sheath in railways
19
作者 Zehui Zhang Qian Huang +3 位作者 Lewen Li Dan Li Xueping Luo Xiaohong Zeng 《Railway Sciences》 2024年第5期622-635,共14页
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h... Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring. 展开更多
关键词 Railway 27.5 kV high-voltage cable Online monitoring system Grounding current Induced potential
在线阅读 下载PDF
Compensation mechanics application of NPR anchor cable to large deformation tunnel in soft rock
20
作者 Yong Li Shusen Huo +1 位作者 Manchao He Zhigang Tao 《International Journal of Coal Science & Technology》 CSCD 2024年第5期177-191,共15页
NPR anchor cable is a new type of support material with negative Poisson's ratio effect,which is widely used in mine support because of its superb compensating mechanical effect.In order to study more deeply the s... NPR anchor cable is a new type of support material with negative Poisson's ratio effect,which is widely used in mine support because of its superb compensating mechanical effect.In order to study more deeply the support effect of NPR anchor cable in soft rock large deformation tunnel,indoor test,numerical simulation and field monitoring were used to study the strong weathering carbonaceous slate tunnel in Min County.The study shows that NPR anchor cable has extraordinary compensating mechanical behavior for soft rock large deformation tunnel,which can control the deformation of tunnel surrounding rock below 300 mm and keep the constant resistance value around 350 kN,which has obvious effect on the control of broken rock.To provide a basis for other research on support for large deformation tunnels in soft rock. 展开更多
关键词 Soft rock Large deformation NPR anchor cable Numerical simulation Compensation mechanics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部