设随机变量W_1,W_2,…,W_k(k≥2)相互独立,W_i~X^2(r_i),i=1,2,…,k,给定常数a_1,a_2,…,a_k(>0),本文讨论独立X^2变量正线性组合sum from i=1 to k (a_iW_i)的近似分布,本文选用cX^2(d)+e的形式作为其近似分布,并通过模拟计算检验...设随机变量W_1,W_2,…,W_k(k≥2)相互独立,W_i~X^2(r_i),i=1,2,…,k,给定常数a_1,a_2,…,a_k(>0),本文讨论独立X^2变量正线性组合sum from i=1 to k (a_iW_i)的近似分布,本文选用cX^2(d)+e的形式作为其近似分布,并通过模拟计算检验效果。展开更多
In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of i...In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of independence about multivariate normal distributions, matrix normal distributions and two parts of the Wishart distribution.展开更多
文摘设随机变量W_1,W_2,…,W_k(k≥2)相互独立,W_i~X^2(r_i),i=1,2,…,k,给定常数a_1,a_2,…,a_k(>0),本文讨论独立X^2变量正线性组合sum from i=1 to k (a_iW_i)的近似分布,本文选用cX^2(d)+e的形式作为其近似分布,并通过模拟计算检验效果。
文摘In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of independence about multivariate normal distributions, matrix normal distributions and two parts of the Wishart distribution.