A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the re...A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the reference functions method to describe the solution to the depth-separated wave equation approximately using parabolic cylinder functions.The conditions for the validity of this approximation are also discussed.Furthermore,a formula that incorporates waveguide effects for the modal group velocity is derived,revealing that boundary effects at very low frequencies can have a significant impact on the propagation characteristics of even low-order normal modes.The present method not only offers improved accuracy compared to the classical WKB approximation and the uniform asymptotic approximation based on Airy functions,but also provides a wider range of depth applicability.Additionally,this method exhibits strong agreement with numerical methods and offers valuable physical insights.Finally,the method is applied to the study of very-low-frequency sound propagation in the South China Sea,leading to sound transmission loss predictions that closely align with experimental observations.展开更多
In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Sehwarzschild black hole with a straight st...In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Sehwarzschild black hole with a straight string passing through it. This angular equation serves as a naive model for our investigation of the combination of supersymmetric quantum mechanics and the WKB method, and will provide valuable insight for our further study of the WKB approximation in real problems, like the one in spheroidal equations, etc.展开更多
The notes here presented are of the modifications introduced in the application of WKB method.Theproblems of two-and three-dimensional harmonic oscillator potential are revisited by WKB and the new formulationof quant...The notes here presented are of the modifications introduced in the application of WKB method.Theproblems of two-and three-dimensional harmonic oscillator potential are revisited by WKB and the new formulationof quantization rule respectively.It is found that the energy spectrum of the radial harmonic oscillator,which isreproduced exactly by the standard WKB method with the Langer modification,is also reproduced exactly without theLanger modification via the new quantization rule approach.An alternative way to obtain the non-integral Maslov indexfor three-dimensional harmonic oscillator is proposed.展开更多
In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introduc...In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introducing new related variables and no matching is needed.The WKB approximation method problem can be solved.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174048 and 12204128)。
文摘A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the reference functions method to describe the solution to the depth-separated wave equation approximately using parabolic cylinder functions.The conditions for the validity of this approximation are also discussed.Furthermore,a formula that incorporates waveguide effects for the modal group velocity is derived,revealing that boundary effects at very low frequencies can have a significant impact on the propagation characteristics of even low-order normal modes.The present method not only offers improved accuracy compared to the classical WKB approximation and the uniform asymptotic approximation based on Airy functions,but also provides a wider range of depth applicability.Additionally,this method exhibits strong agreement with numerical methods and offers valuable physical insights.Finally,the method is applied to the study of very-low-frequency sound propagation in the South China Sea,leading to sound transmission loss predictions that closely align with experimental observations.
基金supported by the National Natural Science Foundation of China (Grant No. 10875018)
文摘In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Sehwarzschild black hole with a straight string passing through it. This angular equation serves as a naive model for our investigation of the combination of supersymmetric quantum mechanics and the WKB method, and will provide valuable insight for our further study of the WKB approximation in real problems, like the one in spheroidal equations, etc.
基金National Natural Science Foundation of China under Grant No.10747130the Foundation of East China University of Science and Technology
文摘The notes here presented are of the modifications introduced in the application of WKB method.Theproblems of two-and three-dimensional harmonic oscillator potential are revisited by WKB and the new formulationof quantization rule respectively.It is found that the energy spectrum of the radial harmonic oscillator,which isreproduced exactly by the standard WKB method with the Langer modification,is also reproduced exactly without theLanger modification via the new quantization rule approach.An alternative way to obtain the non-integral Maslov indexfor three-dimensional harmonic oscillator is proposed.
文摘In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introducing new related variables and no matching is needed.The WKB approximation method problem can be solved.