The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly...The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.展开更多
In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with ir...In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the...By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.展开更多
A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximat...A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.展开更多
To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristi...To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.展开更多
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian res...On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.展开更多
A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50...A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50% or 80% generator loads,the temperatures meet the design requirement.However,it is a little over the requirement at 100%load,duo to experimental errors and some unknown thermal resistances.In the test at 100%load,the developing trends of the parameters of these two generators are similar and only minor differences occurs when they reach steady state our work can be benefit for the design and improvement of MW wind-driven generator cooling solutions.展开更多
Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fif...Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.展开更多
A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integ...A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interarmual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes.展开更多
The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbance...The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone activity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Brazil-Malvinas confluence region. Within this context, efforts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A customized version of the Princeton Ocean Model(POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with(1/12)° resolution covering the different parts of the Brazilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a partially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.展开更多
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the oce...In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.展开更多
This study analyzes the structural characteristics of wind-driven generator,concludes its comment malfunctions and proposes effective methods by general fault analysis methods,so as to design online detection and faul...This study analyzes the structural characteristics of wind-driven generator,concludes its comment malfunctions and proposes effective methods by general fault analysis methods,so as to design online detection and fault diagnosis system of wind-driven generator in virtual instrument.This work will realize real-time detection,help engineers to proceed remote fault diagnosis,reduce maintenance time and increase production efficiency.This study is meaningful and practical to develop a fault diagnosis system for wind-driven generators,which shows professionalization of fault diagnosis system.展开更多
Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated ...Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.展开更多
Two rectangular-shaped lakes,Lake Hulun and Lake Buir,located at the boundary between China and Mongolia,only c.75 km apart and therefore experiencing similar wind fields,have been studied based on satellite images an...Two rectangular-shaped lakes,Lake Hulun and Lake Buir,located at the boundary between China and Mongolia,only c.75 km apart and therefore experiencing similar wind fields,have been studied based on satellite images and field surveys in order to compare their geomorphological and sedimentological characteristics.The wind-driven hydrodynamics,which have a significant effect on the development of littoral landforms and on sediment distribution,have been discussed for the two similar lakes that experienced a prevailing wind perpendicular to their long axis.A conceptual model related to wind-driven water bodies and sediment distribution is proposed.Wave-influenced to wave-dominated deltas,beaches,spits,and eolian dune deposits develop around these two lakes,with a strikingly similar distribution pattern.These features locally inform the longshore drift and help reconstruct the water circulation induced by wind forcing.Under the NW prevailing wind regime,the spits developed on the SW coast with a NW—SE extension,which was influenced by the NW—SE longshore currents.The same influence was observed in the delta extension in the NE area.The differences lie in the presence of fan deltas in the NW region of Lake Hulun,but not in Lake Buir.Additionally,the width of the beach and eolian deposits on the downwind coast of Lake Hulun is three times greater than that of Lake Buir which were caused by the differences in sediment supply and wind fetch between the two lakes.Lake Hulun and Lake Buir provide two reliable examples to understand the relationship among the wind field,provenance,hydrodynamics,landforms,and asymmetrical distribution of clastics in elongated lakes.They also represent relevant modern analogs,which may also be of guiding significance to wind-driven sand body prediction in lacustrine basins.展开更多
Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies hav...Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies have contributed significantly to the understanding of fluid behavior and moisture response of WDR upon impacting walls.However,the quantification of absorbed rainwater by the wall remains elusive.To address this gap,this study focuses on comprehending the dynamic WDR absorption behavior of various exterior finishing materials.Specifically,nine types of finishing materials were selected as research objects and conducted field measurements.The findings reveal that WDR absorption ratio is influenced by physical parameters of materials,surface waterproofing and the cumulative WDR.Leveraging multiple regression fittings,we established an empirical WDR absorption ratio calculation mode.This model serves as a valuable reference for determining building simulation parameters regarding dynamic moisture boundary conditions on the exterior surfaces of walls.By providing empirical insights into WDR absorption,our research contributes to a more comprehensive understanding of moisture behavior in building envelopes,thereby aiding in the development of effective strategies for enhancing building performance and durability.展开更多
A pneumatic annular flume is designed to simulate the current induced by the wind acting on the water surface in shallow lakes and the experiments are conducted to investigate the influence of submerged and emergent f...A pneumatic annular flume is designed to simulate the current induced by the wind acting on the water surface in shallow lakes and the experiments are conducted to investigate the influence of submerged and emergent flexible vegetations of different densities on the flow characteristics (e.g., the flow velocity, the turbulence intensity, the vegetal drag coefficient CD and the equivalent roughness coefficient nb ) at different wind speeds. Vallisneria natans (K natans ) and Acorus calamus (A. calamus) widely distributed in Taihu Lake are selected in this study. It is indicated that the vertical distribution profiles are in logarithmic- curves, The stream-wise velocity rapidly decreases with the increasing vegetation density. The flow at the lower layer of the vegeta- tion sees compensation current characteristics when the vegetation density is the largest. The turbulence intensity in the flume without vegetation is the highest at the free surface and it is near the canopy top for the flume with V. natans. The turbulence intensity near the bottom in the flume with vegetation is smaller than that in the flume without vegetation. A. calamus exerts much larger resistance to the flow than V. natans. The variations of CD and nb caused by the vegetation density and the wind speed are also discussed.展开更多
The development of a simplified 2-D numerical model was described forwind-driven circulation in reservoir u-sing standard k-ε turbulence model to specify eddy viscositydistribution. The governing equations are transf...The development of a simplified 2-D numerical model was described forwind-driven circulation in reservoir u-sing standard k-ε turbulence model to specify eddy viscositydistribution. The governing equations are transformed and solved on variable vertical grids, whichallows refinement at the surface and bottom boundaries. The results of the model simulation for floware compared with analytical solutions for laminar and turbulent flows, experimental data in awind-flume and wind wave tank. The sensitivity analysis results show that use of large number ofdepth layers increases the accuracy for the bottom counter-current flow. Prediction of surface driftwas not very sensitive to surface grid refinement. The model was also applied to Baisha reservoirfor an assumed wind condition and showed to be able to simulate the general features of surfacedrift and return flow under variable flow depth. The model can serve as alternative means ofstudying wind-driven flow beside experiments. It also reduced the problem complexity associated with3-D circulation models while faithfully reproducing the drift and near bottom return currents.展开更多
The adjoint approach is a variational method which is often applied to data assimilation widely in meteorology and oceanography. It is used for analyses on observing optimization for the wind-driven Sverdrup circulati...The adjoint approach is a variational method which is often applied to data assimilation widely in meteorology and oceanography. It is used for analyses on observing optimization for the wind-driven Sverdrup circulation. The adjoint system developed by Thacker and Long (1992), which is based on the GFDL Byran-Cox model, includes three components, i. e. the forward model, the adjoint model and the optimal algorithm. The GFDL Byran-Cox model was integrated for a long time driven by a batch of ideal wind stresses whose meridional component is set to null and zonal component is a sine function of latitudes in a rectangle box with six vertical levels and 2 by 2 degree horizontal resolution. The results are regarded as a “real” representative of the wind-driven Sverdrup circulation, from which the four dimensional fields are allowed to be sampled in several ways, such as sampling at the different levels or along the different vertical sections. To set the different samples, the fields of temperature, salinity and velocities function as the observational limit in the adjoint system respectively where the same initial condition is chosen for 4D VAR data assimilation. By examining the distance functions which measure the misfit between the circulation field from the control experiment of the adjoint system with a complete observation and those from data assimilation of adjoint approach in these sensitivity experiments respectively, observing optimizations for the wind-driven Sverdrup circulation will be suggested under a fixed observational cost.展开更多
基金This study was supported by the Youth Ocean Sience Funds of State Oceanic Administration under contract No. 97301.
文摘The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.
基金supported by the National Natural Science Foundation of China(Grants No.51739002 and 51479064)the World-Class Universities(Disciplines)and Characteristic Development Guidance Funds for the Central Universitiesthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(Grant No.PPZY2015A051)
文摘In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金The National Natural Science Foundations of China under contract Nos 41576013 and 11362012the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.
基金The work was supported by the One Hundred Talents Project of the Chinese Academy of Sciences(Grant No.KCL14014)the Impacts of Ocean-Land-Atmosphere Interactions over the East Asian Mon soon Region on the Climate in China(EAMOLA)(Grant No:ZKCX2-SW-210)the National Outstanding Youth Science Foundation of China(Grant No.40325016).
文摘A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.
基金Projects(20B062,19B054)supported by Excellent Youth Program of Hunan Education Department,ChinaProject(2019JJ50688)supported by Hunan Provincial Natural Science Foundation of ChinaProject(kq195004)supported by Changsha Science and Technology Bureau Project,China。
文摘To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.
文摘A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50% or 80% generator loads,the temperatures meet the design requirement.However,it is a little over the requirement at 100%load,duo to experimental errors and some unknown thermal resistances.In the test at 100%load,the developing trends of the parameters of these two generators are similar and only minor differences occurs when they reach steady state our work can be benefit for the design and improvement of MW wind-driven generator cooling solutions.
文摘Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.
基金The work is supported by the "100 Talent project" of Chinese Academy of Sciences (Grant No. KCL14014) the National 0utstanding Youth Science Foundation of China (Grant No. 40325016).
文摘A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interarmual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes.
基金the Brazilian agencies FAPESP (Sao Paulo State Research Agency) and CNPq (National Council for Scientific and Technological Development) for funding throughout the development of this work
文摘The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone activity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Brazil-Malvinas confluence region. Within this context, efforts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A customized version of the Princeton Ocean Model(POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with(1/12)° resolution covering the different parts of the Brazilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a partially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.
基金The National Natural Science Foundation of China under contract No.40576020
文摘In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.
基金supported by the following funding projects:Scientific Research Project of Jieyang Polytechnic(Project No.2019JYPCQB02)Science and Technology Project of Jieyang(Project No.sdzx002)。
文摘This study analyzes the structural characteristics of wind-driven generator,concludes its comment malfunctions and proposes effective methods by general fault analysis methods,so as to design online detection and fault diagnosis system of wind-driven generator in virtual instrument.This work will realize real-time detection,help engineers to proceed remote fault diagnosis,reduce maintenance time and increase production efficiency.This study is meaningful and practical to develop a fault diagnosis system for wind-driven generators,which shows professionalization of fault diagnosis system.
基金The work described in this paper was financially supported by the Shanghai Municipality Natural Science Foundation(No.21ZR1434400).
文摘Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.
基金supported by the National Science and Technology Special Project(No.2017ZX05009-002)the Fundamental Research Funds for the Central Universitiessupported by CNES through the funding of his postdoctoral fellowship。
文摘Two rectangular-shaped lakes,Lake Hulun and Lake Buir,located at the boundary between China and Mongolia,only c.75 km apart and therefore experiencing similar wind fields,have been studied based on satellite images and field surveys in order to compare their geomorphological and sedimentological characteristics.The wind-driven hydrodynamics,which have a significant effect on the development of littoral landforms and on sediment distribution,have been discussed for the two similar lakes that experienced a prevailing wind perpendicular to their long axis.A conceptual model related to wind-driven water bodies and sediment distribution is proposed.Wave-influenced to wave-dominated deltas,beaches,spits,and eolian dune deposits develop around these two lakes,with a strikingly similar distribution pattern.These features locally inform the longshore drift and help reconstruct the water circulation induced by wind forcing.Under the NW prevailing wind regime,the spits developed on the SW coast with a NW—SE extension,which was influenced by the NW—SE longshore currents.The same influence was observed in the delta extension in the NE area.The differences lie in the presence of fan deltas in the NW region of Lake Hulun,but not in Lake Buir.Additionally,the width of the beach and eolian deposits on the downwind coast of Lake Hulun is three times greater than that of Lake Buir which were caused by the differences in sediment supply and wind fetch between the two lakes.Lake Hulun and Lake Buir provide two reliable examples to understand the relationship among the wind field,provenance,hydrodynamics,landforms,and asymmetrical distribution of clastics in elongated lakes.They also represent relevant modern analogs,which may also be of guiding significance to wind-driven sand body prediction in lacustrine basins.
基金Shanghai Municipality Natural Science Foundation(Grant No.21ZR1434400)Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,Chongqing University,China(Grant No.LNTCCMA 20210103)National Natural Science Foundation ofChina(Grant No.51778358).
文摘Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies have contributed significantly to the understanding of fluid behavior and moisture response of WDR upon impacting walls.However,the quantification of absorbed rainwater by the wall remains elusive.To address this gap,this study focuses on comprehending the dynamic WDR absorption behavior of various exterior finishing materials.Specifically,nine types of finishing materials were selected as research objects and conducted field measurements.The findings reveal that WDR absorption ratio is influenced by physical parameters of materials,surface waterproofing and the cumulative WDR.Leveraging multiple regression fittings,we established an empirical WDR absorption ratio calculation mode.This model serves as a valuable reference for determining building simulation parameters regarding dynamic moisture boundary conditions on the exterior surfaces of walls.By providing empirical insights into WDR absorption,our research contributes to a more comprehensive understanding of moisture behavior in building envelopes,thereby aiding in the development of effective strategies for enhancing building performance and durability.
基金Project supported by the National Science Funds for Creative Research Groups of China(Grant No.51421006)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13061)+3 种基金the National Scie-nce Fund for Distinguished Young Scholars(Grant No.51225901)the Key Program of National Natural Science Foundation of China(Grant No.41430751)the National Natu-ral Science Foundation of China(Grant No.51479065)PAPD
文摘A pneumatic annular flume is designed to simulate the current induced by the wind acting on the water surface in shallow lakes and the experiments are conducted to investigate the influence of submerged and emergent flexible vegetations of different densities on the flow characteristics (e.g., the flow velocity, the turbulence intensity, the vegetal drag coefficient CD and the equivalent roughness coefficient nb ) at different wind speeds. Vallisneria natans (K natans ) and Acorus calamus (A. calamus) widely distributed in Taihu Lake are selected in this study. It is indicated that the vertical distribution profiles are in logarithmic- curves, The stream-wise velocity rapidly decreases with the increasing vegetation density. The flow at the lower layer of the vegeta- tion sees compensation current characteristics when the vegetation density is the largest. The turbulence intensity in the flume without vegetation is the highest at the free surface and it is near the canopy top for the flume with V. natans. The turbulence intensity near the bottom in the flume with vegetation is smaller than that in the flume without vegetation. A. calamus exerts much larger resistance to the flow than V. natans. The variations of CD and nb caused by the vegetation density and the wind speed are also discussed.
文摘The development of a simplified 2-D numerical model was described forwind-driven circulation in reservoir u-sing standard k-ε turbulence model to specify eddy viscositydistribution. The governing equations are transformed and solved on variable vertical grids, whichallows refinement at the surface and bottom boundaries. The results of the model simulation for floware compared with analytical solutions for laminar and turbulent flows, experimental data in awind-flume and wind wave tank. The sensitivity analysis results show that use of large number ofdepth layers increases the accuracy for the bottom counter-current flow. Prediction of surface driftwas not very sensitive to surface grid refinement. The model was also applied to Baisha reservoirfor an assumed wind condition and showed to be able to simulate the general features of surfacedrift and return flow under variable flow depth. The model can serve as alternative means ofstudying wind-driven flow beside experiments. It also reduced the problem complexity associated with3-D circulation models while faithfully reproducing the drift and near bottom return currents.
文摘The adjoint approach is a variational method which is often applied to data assimilation widely in meteorology and oceanography. It is used for analyses on observing optimization for the wind-driven Sverdrup circulation. The adjoint system developed by Thacker and Long (1992), which is based on the GFDL Byran-Cox model, includes three components, i. e. the forward model, the adjoint model and the optimal algorithm. The GFDL Byran-Cox model was integrated for a long time driven by a batch of ideal wind stresses whose meridional component is set to null and zonal component is a sine function of latitudes in a rectangle box with six vertical levels and 2 by 2 degree horizontal resolution. The results are regarded as a “real” representative of the wind-driven Sverdrup circulation, from which the four dimensional fields are allowed to be sampled in several ways, such as sampling at the different levels or along the different vertical sections. To set the different samples, the fields of temperature, salinity and velocities function as the observational limit in the adjoint system respectively where the same initial condition is chosen for 4D VAR data assimilation. By examining the distance functions which measure the misfit between the circulation field from the control experiment of the adjoint system with a complete observation and those from data assimilation of adjoint approach in these sensitivity experiments respectively, observing optimizations for the wind-driven Sverdrup circulation will be suggested under a fixed observational cost.