In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong,Macao,and Taiwan)from 2008 to 2019.In addition,the Theil index method and ker...In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong,Macao,and Taiwan)from 2008 to 2019.In addition,the Theil index method and kernel density estimation were used to analyze the spatiotemporal characteristics of the agricultural versatility in each province.The results show that the agricultural product supply and social security functions rapidly developed,but the economic development was weak.From 2008 to 2019,the total functional index of agriculture increased by 6.74%;the functional index of the agricultural product supply,social security,and ecological services increased by 12.72%,5.53%,and 2.05%,respectively;and the functional index of economic development decreased by 1.32%.The development of agricultural multifunctions in China is regionally heterogeneous.Based on the Theil index method,the differences in the agricultural functions of the three regions are mainly due to intragroup differences.The contribution of intragroup differences of the eight economic regions is significantly lower than that of the three regions.However,intragroup differences dominate the agricultural product supply,economic development,and social security functions and intergroup differences control the ecological service function.The kernel density estimation curve shows that the overall agricultural functional evaluation index increased,among which the agricultural product supply function increased the most.展开更多
Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid...Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.展开更多
A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a c...Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a complex interplay of intrinsic and extrinsic factors,encompassing signaling pathways,transcriptional regulators,epigenetic modifiers,and microenvironmental cues[2-5].展开更多
The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of Hi...The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of High Efficiency Video Coding(HEVC,H.265),and adds the Adaptive Loop Filter(ALF)to minimize the error between the original sample and the decoded sample.However,for chaotic moving video encoding with low bitrates,serious blocking artifacts still remain after in-loop filtering due to the severe quantization distortion of texture details.To tackle this problem,this paper proposes a Convolutional Neural Network(CNN)based VVC in-loop filter for chaotic moving video encoding with low bitrates.First,a blur-aware attention network is designed to perceive the blurring effect and to restore texture details.Then,a deep in-loop filtering method is proposed based on the blur-aware network to replace the VVC in-loop filter.Finally,experimental results show that the proposed method could averagely save 8.3%of bit consumption at similar subjective quality.Meanwhile,under close bit rate consumption,the proposed method could reconstruct more texture information,thereby significantly reducing the blocking artifacts and improving the visual quality.展开更多
Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after f...Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after fashion item,transcending age and cultural barriers.The body-hugging style of leggings has remained in vogue,attracting young people of all ages and backgrounds.With their enduring popularity,it’s likely that leggings will remain a fashion staple for years to come.展开更多
为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在...为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在评价函数中加入变量因子并进行适度的回火处理,以此来优化布局。实验表明,该算法提高了布通率,优化了连线长度,与最具代表性的VPR(Versatile Place and Route)布局算法相比布线通道宽度提高了近6%,电路总的连线长度降低了4-23%。展开更多
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites ...A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate,which is critical for the subsequent CO_(2) fixation.Also,the existence of micropores and N-rich units in Zn(dobdc)(datz)afforded affinity towards CO_(2),which is beneficial to further improvement on catalytic CO_(2) conversion performance.Satisfactorily,Zn(dobdc)(datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO_(2) cycloaddition with epoxides,and 98%propylene carbonate yield was obtained under mild conditions(80C,1.5 MPa and solvent-free).In addition,Zn(dobdc)(datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity.The highly stable,easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO_(2)conversion.展开更多
The paper starts with a presentation of the versatile leadership model developed by Kaplan and Kaiser and of their 360 feedback tool Leadership Versatility Index (LVI). Versatility can be generally defined as a mast...The paper starts with a presentation of the versatile leadership model developed by Kaplan and Kaiser and of their 360 feedback tool Leadership Versatility Index (LVI). Versatility can be generally defined as a mastery of opposites, as the ability to play multiple roles, even contradictory ones, without emphasizing some at the expense of others. The LVI has been designed to help managers understand their repertoire and how they can become more versatile leaders. It employs an innovative rating scale on which ideal score "0" is in the middle of it (the right amount), flanked by underdoing to the left (too little) and overdoing to the right (too much). The idea is to avoid the "more is better" design trap by providing a way for raters to indicate when managers go to counterproductive extremes. The LVI works with two-sided view of leadership based on two major pairs of opposites: directive vs. supportive leadership and execution vs. strategy. Interventions based on the LVI results help to overcome traditional behaviorism as they combine the outer work (behavioral change) with the inner work (personal change) of development. Application of the LV1 on a sample of the managers from Skoda Auto a.s. and verification of its practical value represented the core of the SAVS IGA project MM/O7/02. The last part of the paper is devoted to a presentation of the findings from this project. The LVI has been found to be both original and a very useful 360 feedback tool which can be addressed to two general groups of clients: (1) experienced senior managers; and (2) young perspective managers in the beginning of their career.展开更多
The lineage specification of mesenchymal stem/stromal cells(MSCs) is tightly regulated by a wide range of factors. Recently, the versatile functions of ZBP1(also known as DAI or DLM-1) have been reported in the blood ...The lineage specification of mesenchymal stem/stromal cells(MSCs) is tightly regulated by a wide range of factors. Recently, the versatile functions of ZBP1(also known as DAI or DLM-1) have been reported in the blood circulation and immune systems.However, the biological function of ZBP1 during the lineage specification of MSCs is still unknown. In the present study, we found that ZBP1 was upregulated during osteogenesis but downregulated during adipogenesis in mouse bone marrow-derived MSCs(m BMSCs). ZBP1 was highly expressed in osteoblasts but expressed at a relatively low level in marrow adipocytes. Knockdown of ZBP1 inhibited alkaline phosphataseactivity, extracellular matrix mineralization, and osteogenesis-related gene expression in vitro and reduced ectopic bone formation in vivo. Knockdown of ZBP1 also promoted adipogenesis in MSCs in vitro. Conversely, the overexpression of ZBP1 increased the osteogenesis but suppressed the adipogenesis of MSCs. When the expression of ZBP1 was rescued, the osteogenic capacity of ZBP1-depleted m BMSCs was restored at both the molecular and phenotypic levels.Furthermore, we demonstrated that ZBP1, a newly identified target of Wnt/β-catenin signaling, was required for β-catenin translocation into nuclei. Collectively, our results indicate that ZBP1 is a novel regulator of bone and fat transdifferentiation via Wnt/β-catenin signaling.展开更多
Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member...Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member of the highly conserved TGF-βsuperfamily,plays a versatile role in cartilage physiology and pathology.TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses,including cell survival,proliferation,migration,and differentiation.Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy,its regulatory role is especially important to cartilage development.Increased TGF-β3 plays a dual role:in healthy tissues,it can facilitate chondrocyte viability,but in osteoarthritic chondrocytes,it can accelerate the progression of disease.Recently,TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis(OA)owing to its protective effect,which it confers by enhancing the recruitment of autologous mesenchymal stem cells(MSCs)to damaged cartilage.However,the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood.In this review,we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology,providing up-to-date strategies for cartilage repair and preventive treatment.展开更多
A versatile peroxidase (VP-Peco60-7 ) was generated and purified from the liquid culture of Pleurotus eryngii. The purification procedure included ammonium sulfate precipitation, ion exchange chromatography, and gel c...A versatile peroxidase (VP-Peco60-7 ) was generated and purified from the liquid culture of Pleurotus eryngii. The purification procedure included ammonium sulfate precipitation, ion exchange chromatography, and gel chromatography. The molecular weight and isoelectric point (pI) of VP-Peco60-7 were determined to be approxi-mately 40 kDa and 4.1, respectively. By N-terminal sequence determination and peptide mapping analysis, VP-Peco60-7 was found to be similar to the versatile peroxidase isoenzyme VPL1, which was previously isolated from liquid cultures of the same species. However, the molecular weight and pI of VP-Peco60-7 were different from those of versatile peroxidases of liquid cultures, implying that the VP-Peco60-7 in this study is of a novel type. With 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a substrate, the maximal enzyme activity was obtained at 50 °C and pH 3.0. The catalysis of ABTS by VP-Peco60-7 was expressed by the Michaelis-Menten equa-tion. At 50 °C and pH 3.0, the maximum velocity (V max ) was 188.68 U·mg-1 and the michaelis constant (K m ) was 203.09 μmol·L-1 .展开更多
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versati...With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids(t FNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, t FNAs have been widely applied in the biomedical field as threedimensional DNA nanomaterials. Surprisingly, t FNAs exhibit positive effects on cellular biological behaviors and tissue regeneration,which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity,t FNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization,intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic t FNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic t FNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone,cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.展开更多
In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluo...In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells.展开更多
Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibit...Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of △^(9)-tetrahydrocannabinol;however,recently,the perspective has changed with the recognition of additional therapeutic values,particularly the pharmacological potential of cannabidiol.A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources.Here,we comprehensively review the historical usage of Cannabis,biosynthesis of trichome-specific cannabinoids,regulatory network of trichome development,and synthetic biology of cannabinoids.This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids,and the development and utilization of novel Cannabis varieties.展开更多
As a versatile compound,myo-inositol plays vital roles in plant biochemistry and physiology.We previously showed that exogenous application of myo-inositol had a positive role in salinity tolerance in Malus hupehensis...As a versatile compound,myo-inositol plays vital roles in plant biochemistry and physiology.We previously showed that exogenous application of myo-inositol had a positive role in salinity tolerance in Malus hupehensis Rehd.In this study,we used MdMIPS(the rate-limiting gene of myo-inositol biosynthesis)transgenic apple lines to gain new insights into the physiological role of myo-inositol in apple.Decreasing myo-inositol biosynthesis in apple lines by RNA silencing of MdMIPS1/2 led to extensive programmed cell death,which manifested as necrosis of both the leaves and roots and,ultimately,plant death.Necrosis was directly caused by the excessive accumulation of reactive oxygen species,which may be closely associated with the cell wall polysaccharide-mediated increase in salicylic acid and a compromised antioxidant system,and this process was enhanced by an increase in ethylene production.In addition,a high accumulation of sorbitol promoted necrosis.This synergetic interplay between salicylic acid and ethylene was further supported by the fact that increased myo-inositol accumulation significantly delayed leaf senescence in MdMIPS1-overexpressing apple lines.Taken together,our results indicated that apple myo-inositol regulates reactive oxygen species-induced programmed cell death through salicylic acid-dependent and ethylene-dependent pathways.展开更多
文摘In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong,Macao,and Taiwan)from 2008 to 2019.In addition,the Theil index method and kernel density estimation were used to analyze the spatiotemporal characteristics of the agricultural versatility in each province.The results show that the agricultural product supply and social security functions rapidly developed,but the economic development was weak.From 2008 to 2019,the total functional index of agriculture increased by 6.74%;the functional index of the agricultural product supply,social security,and ecological services increased by 12.72%,5.53%,and 2.05%,respectively;and the functional index of economic development decreased by 1.32%.The development of agricultural multifunctions in China is regionally heterogeneous.Based on the Theil index method,the differences in the agricultural functions of the three regions are mainly due to intragroup differences.The contribution of intragroup differences of the eight economic regions is significantly lower than that of the three regions.However,intragroup differences dominate the agricultural product supply,economic development,and social security functions and intergroup differences control the ecological service function.The kernel density estimation curve shows that the overall agricultural functional evaluation index increased,among which the agricultural product supply function increased the most.
文摘Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
文摘Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a complex interplay of intrinsic and extrinsic factors,encompassing signaling pathways,transcriptional regulators,epigenetic modifiers,and microenvironmental cues[2-5].
基金supported by National Natural Science Foundation of China under grant U20A20157,61771082,62271096 and 61871062the General Program of Chonqing Natural Science Foundation under grant cstc2021jcyj-msxm X0032+2 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-zdxm X0024)the Science and Technology Research Program of Chongqing Municipal Education Commission under grant KJQN202300632the University Innovation Research Group of Chongqing(CXQT20017)。
文摘The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of High Efficiency Video Coding(HEVC,H.265),and adds the Adaptive Loop Filter(ALF)to minimize the error between the original sample and the decoded sample.However,for chaotic moving video encoding with low bitrates,serious blocking artifacts still remain after in-loop filtering due to the severe quantization distortion of texture details.To tackle this problem,this paper proposes a Convolutional Neural Network(CNN)based VVC in-loop filter for chaotic moving video encoding with low bitrates.First,a blur-aware attention network is designed to perceive the blurring effect and to restore texture details.Then,a deep in-loop filtering method is proposed based on the blur-aware network to replace the VVC in-loop filter.Finally,experimental results show that the proposed method could averagely save 8.3%of bit consumption at similar subjective quality.Meanwhile,under close bit rate consumption,the proposed method could reconstruct more texture information,thereby significantly reducing the blocking artifacts and improving the visual quality.
文摘Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after fashion item,transcending age and cultural barriers.The body-hugging style of leggings has remained in vogue,attracting young people of all ages and backgrounds.With their enduring popularity,it’s likely that leggings will remain a fashion staple for years to come.
文摘随着现场可编程门阵列(Field Programmable Gate Array,FPGA)在现代航天领域的广泛应用,FPGA的单粒子效应(Single Event Effect,SEE)逐渐成为人们的研究热点。选择Microsemi公司Flash型FPGA分布范围最广的可编程逻辑资源VersaTile和对单粒子效应敏感的嵌入式RAM单元RAM Block作为单粒子效应的主要测试对象,提出了两种不同的单粒子效应测试方法;然后,使用仿真工具ModelSim对提出的两种电路的可行性进行了仿真验证;最后,基于自主研发的实验测试平台,在兰州重离子加速器(Heavy Ion Research Facility in Lanzhou,HIRFL)上使用86Kr束进行了束流辐照实验,实验结果表明,测试方法合理有效。
文摘为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在评价函数中加入变量因子并进行适度的回火处理,以此来优化布局。实验表明,该算法提高了布通率,优化了连线长度,与最具代表性的VPR(Versatile Place and Route)布局算法相比布线通道宽度提高了近6%,电路总的连线长度降低了4-23%。
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金the National Natural Science Foundation of China(21972034,21673060)the State Key Lab of Urban Water Resource and Environment of Harbin Institute of Technology(HIT2019DX12).
文摘A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate,which is critical for the subsequent CO_(2) fixation.Also,the existence of micropores and N-rich units in Zn(dobdc)(datz)afforded affinity towards CO_(2),which is beneficial to further improvement on catalytic CO_(2) conversion performance.Satisfactorily,Zn(dobdc)(datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO_(2) cycloaddition with epoxides,and 98%propylene carbonate yield was obtained under mild conditions(80C,1.5 MPa and solvent-free).In addition,Zn(dobdc)(datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity.The highly stable,easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO_(2)conversion.
文摘The paper starts with a presentation of the versatile leadership model developed by Kaplan and Kaiser and of their 360 feedback tool Leadership Versatility Index (LVI). Versatility can be generally defined as a mastery of opposites, as the ability to play multiple roles, even contradictory ones, without emphasizing some at the expense of others. The LVI has been designed to help managers understand their repertoire and how they can become more versatile leaders. It employs an innovative rating scale on which ideal score "0" is in the middle of it (the right amount), flanked by underdoing to the left (too little) and overdoing to the right (too much). The idea is to avoid the "more is better" design trap by providing a way for raters to indicate when managers go to counterproductive extremes. The LVI works with two-sided view of leadership based on two major pairs of opposites: directive vs. supportive leadership and execution vs. strategy. Interventions based on the LVI results help to overcome traditional behaviorism as they combine the outer work (behavioral change) with the inner work (personal change) of development. Application of the LV1 on a sample of the managers from Skoda Auto a.s. and verification of its practical value represented the core of the SAVS IGA project MM/O7/02. The last part of the paper is devoted to a presentation of the findings from this project. The LVI has been found to be both original and a very useful 360 feedback tool which can be addressed to two general groups of clients: (1) experienced senior managers; and (2) young perspective managers in the beginning of their career.
基金supported by the Foundation of the National Natural Science Foundation of China (No. 81671024, 81371171, 81571009, and 81600877)the China Postdoctoral Science Foundation (2016M600745)。
文摘The lineage specification of mesenchymal stem/stromal cells(MSCs) is tightly regulated by a wide range of factors. Recently, the versatile functions of ZBP1(also known as DAI or DLM-1) have been reported in the blood circulation and immune systems.However, the biological function of ZBP1 during the lineage specification of MSCs is still unknown. In the present study, we found that ZBP1 was upregulated during osteogenesis but downregulated during adipogenesis in mouse bone marrow-derived MSCs(m BMSCs). ZBP1 was highly expressed in osteoblasts but expressed at a relatively low level in marrow adipocytes. Knockdown of ZBP1 inhibited alkaline phosphataseactivity, extracellular matrix mineralization, and osteogenesis-related gene expression in vitro and reduced ectopic bone formation in vivo. Knockdown of ZBP1 also promoted adipogenesis in MSCs in vitro. Conversely, the overexpression of ZBP1 increased the osteogenesis but suppressed the adipogenesis of MSCs. When the expression of ZBP1 was rescued, the osteogenic capacity of ZBP1-depleted m BMSCs was restored at both the molecular and phenotypic levels.Furthermore, we demonstrated that ZBP1, a newly identified target of Wnt/β-catenin signaling, was required for β-catenin translocation into nuclei. Collectively, our results indicate that ZBP1 is a novel regulator of bone and fat transdifferentiation via Wnt/β-catenin signaling.
基金National Natural Science Foundation of China(81771047 to J.X.,81670978 and 81870754 to X.Z.)Sichuan Science&Technology Innovation Talent Project(2022JDRC0044)。
文摘Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member of the highly conserved TGF-βsuperfamily,plays a versatile role in cartilage physiology and pathology.TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses,including cell survival,proliferation,migration,and differentiation.Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy,its regulatory role is especially important to cartilage development.Increased TGF-β3 plays a dual role:in healthy tissues,it can facilitate chondrocyte viability,but in osteoarthritic chondrocytes,it can accelerate the progression of disease.Recently,TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis(OA)owing to its protective effect,which it confers by enhancing the recruitment of autologous mesenchymal stem cells(MSCs)to damaged cartilage.However,the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood.In this review,we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology,providing up-to-date strategies for cartilage repair and preventive treatment.
基金Supported by the Special Funds for Major State Basic Research Program of China (2007CB707805) the Natural Science Foundation of Zhejiang Province (Y505334)
文摘A versatile peroxidase (VP-Peco60-7 ) was generated and purified from the liquid culture of Pleurotus eryngii. The purification procedure included ammonium sulfate precipitation, ion exchange chromatography, and gel chromatography. The molecular weight and isoelectric point (pI) of VP-Peco60-7 were determined to be approxi-mately 40 kDa and 4.1, respectively. By N-terminal sequence determination and peptide mapping analysis, VP-Peco60-7 was found to be similar to the versatile peroxidase isoenzyme VPL1, which was previously isolated from liquid cultures of the same species. However, the molecular weight and pI of VP-Peco60-7 were different from those of versatile peroxidases of liquid cultures, implying that the VP-Peco60-7 in this study is of a novel type. With 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a substrate, the maximal enzyme activity was obtained at 50 °C and pH 3.0. The catalysis of ABTS by VP-Peco60-7 was expressed by the Michaelis-Menten equa-tion. At 50 °C and pH 3.0, the maximum velocity (V max ) was 188.68 U·mg-1 and the michaelis constant (K m ) was 203.09 μmol·L-1 .
基金supported by National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(82101077,81970916)+3 种基金Sichuan Province Youth Science and Technology Innovation Team(2022JDTD0021)Sichuan University Postdoctoral Interdisciplinary Innovation Fundthe Fundamental Research Funds for the Central Universities,Postdoctoral Science Foundation of China(Grant 2021M692271)West China School/Hospital of Stomatology Sichuan University(No.RCDWJS2022-14 and RCDWJS2021-20)。
文摘With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids(t FNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, t FNAs have been widely applied in the biomedical field as threedimensional DNA nanomaterials. Surprisingly, t FNAs exhibit positive effects on cellular biological behaviors and tissue regeneration,which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity,t FNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization,intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic t FNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic t FNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone,cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
基金supported by the National Natural Science Foundation of China(51678411)the National Key Technology R&D Program(2016YFB0303300)the Science and Technology Plans of Tianjin(Nos.19PTSYJC00010 and 18PTSYJC00180)。
文摘In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells.
基金supported by the National Natural Science Foundation of China(82204579)the Fundamental Research Funds for the Central Universities(2572022DX06)+1 种基金the Scientific and Technological Innovation Project of China Academy of Chinese Medical Science(CI2021A04113)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team).
文摘Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of △^(9)-tetrahydrocannabinol;however,recently,the perspective has changed with the recognition of additional therapeutic values,particularly the pharmacological potential of cannabidiol.A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources.Here,we comprehensively review the historical usage of Cannabis,biosynthesis of trichome-specific cannabinoids,regulatory network of trichome development,and synthetic biology of cannabinoids.This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids,and the development and utilization of novel Cannabis varieties.
基金supported by the National Key Research and Development Program of China(2018YFD1000303)the Earmarked Fund for China Agriculture Research System(CARS-27).
文摘As a versatile compound,myo-inositol plays vital roles in plant biochemistry and physiology.We previously showed that exogenous application of myo-inositol had a positive role in salinity tolerance in Malus hupehensis Rehd.In this study,we used MdMIPS(the rate-limiting gene of myo-inositol biosynthesis)transgenic apple lines to gain new insights into the physiological role of myo-inositol in apple.Decreasing myo-inositol biosynthesis in apple lines by RNA silencing of MdMIPS1/2 led to extensive programmed cell death,which manifested as necrosis of both the leaves and roots and,ultimately,plant death.Necrosis was directly caused by the excessive accumulation of reactive oxygen species,which may be closely associated with the cell wall polysaccharide-mediated increase in salicylic acid and a compromised antioxidant system,and this process was enhanced by an increase in ethylene production.In addition,a high accumulation of sorbitol promoted necrosis.This synergetic interplay between salicylic acid and ethylene was further supported by the fact that increased myo-inositol accumulation significantly delayed leaf senescence in MdMIPS1-overexpressing apple lines.Taken together,our results indicated that apple myo-inositol regulates reactive oxygen species-induced programmed cell death through salicylic acid-dependent and ethylene-dependent pathways.