Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement...Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement on speciated VOC (including OVOC) emissions from six construction machinery and five river ships in the Pearl River Delta (PRD) region to identify VOC emission characteristics.We noticed that OVOC emissions from construction machinery and ships accounted for more than 50%of the total VOC emissions,followed by alkenes,aromatics and alkanes.Formaldehyde and acetaldehyde were the most emission species,accounting for 61.8%-83.2%of OVOCs.For construction machinery,the fuel-based emission factors of roller,grader and pile driver were 3.12,3.12 and 7.36 g/kg,respectively.With the rigorous restraint by the national emission standards,VOC emissions of construction machinery had decreased considerably,especially during stageⅢ.Ozone formation potential was also significantly reduced due to the significant decrease in emissions of OVOCs and alkenes with higher reactivity.For river ships,the fuel-based emission factors of cargo ships and speedboat were 1.46 and 0.44 g/kg,respectively.VOC emissions from construction machinery and river ships in Guangdong Province in 2017 were 8851.0 and 4361.0 ton,respectively.This study filled the knowledge gaps of reactive gas emissions from different kinds of non-road mobile sources over the PRD,and more importantly,highlighted the necessity in adding OVOC measurement to give a complete and accurate depiction of reactive gas emissions from non-road mobile sources.展开更多
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions...Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.展开更多
Based on Guenther light-temperature model , annual emission of VOCs discharged by plants in Nanjing was estimated, and the impacts of VOCs discharged by afforesting vegetation in the city on ozone concentration was an...Based on Guenther light-temperature model , annual emission of VOCs discharged by plants in Nanjing was estimated, and the impacts of VOCs discharged by afforesting vegetation in the city on ozone concentration was analyzed. The results show that annual emission of VOCs dis- charged by plants in Nanjing is about 0.004 9 Tg C. The annual emmisions of isoprene, monoterpene and other VOCs account for 18.0%, 25.9% and 56.1% of total emission of VOCs respectively. VOCs discharged by afforesting vegetation in Nanjing has the greatest impact on average con- centration of ozone in winter.展开更多
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days unde...A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.展开更多
Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic ...Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual(BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide(BAU + extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery(ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050(BAU + ORVR/BAU + delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050.展开更多
基金supported by the National Key Research and Development Program of China (No.2016YFC0202201)the National Natural Science Foundation of China (No.91644221)。
文摘Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement on speciated VOC (including OVOC) emissions from six construction machinery and five river ships in the Pearl River Delta (PRD) region to identify VOC emission characteristics.We noticed that OVOC emissions from construction machinery and ships accounted for more than 50%of the total VOC emissions,followed by alkenes,aromatics and alkanes.Formaldehyde and acetaldehyde were the most emission species,accounting for 61.8%-83.2%of OVOCs.For construction machinery,the fuel-based emission factors of roller,grader and pile driver were 3.12,3.12 and 7.36 g/kg,respectively.With the rigorous restraint by the national emission standards,VOC emissions of construction machinery had decreased considerably,especially during stageⅢ.Ozone formation potential was also significantly reduced due to the significant decrease in emissions of OVOCs and alkenes with higher reactivity.For river ships,the fuel-based emission factors of cargo ships and speedboat were 1.46 and 0.44 g/kg,respectively.VOC emissions from construction machinery and river ships in Guangdong Province in 2017 were 8851.0 and 4361.0 ton,respectively.This study filled the knowledge gaps of reactive gas emissions from different kinds of non-road mobile sources over the PRD,and more importantly,highlighted the necessity in adding OVOC measurement to give a complete and accurate depiction of reactive gas emissions from non-road mobile sources.
基金supported by the Environmental Protection Public Welfare Project (No. 201109035)
文摘Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.
文摘Based on Guenther light-temperature model , annual emission of VOCs discharged by plants in Nanjing was estimated, and the impacts of VOCs discharged by afforesting vegetation in the city on ozone concentration was analyzed. The results show that annual emission of VOCs dis- charged by plants in Nanjing is about 0.004 9 Tg C. The annual emmisions of isoprene, monoterpene and other VOCs account for 18.0%, 25.9% and 56.1% of total emission of VOCs respectively. VOCs discharged by afforesting vegetation in Nanjing has the greatest impact on average con- centration of ozone in winter.
基金financially supported by the Natural Science Foundation of China(Nos.41025012,41103067,41571130031 and 41273095)
文摘A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.
基金supported by the National Natural Science Foundation of China (No. 71101078)the National High Technology Research and Development Program of China (No. 2013AA065303D)the National Environmental Protection Public Welfare Research Fund (No. 201209003 and No.201409021)
文摘Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual(BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide(BAU + extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery(ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050(BAU + ORVR/BAU + delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050.