The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the sp...The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the spectral library.Under such circumstances,a novel greedy algorithm for sparse unmixing of hyperspectral data is presented,termed the recursive dictionary-based simultaneous orthogonal matching pursuit(RD-SOMP).The algorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks.At each iteration of the block,the spectral library is projected into the orthogonal subspace and renormalized,which can reduce the correlation of the spectral library.Then RD-SOMP selects a new endmember with the maximum correlation between the current residual and the orthogonal subspace of the spectral library.The endmembers picked in all the blocks are associated as the endmember sets of the whole hyperspectral data.Finally,the abundances are estimated using the whole hyperspectral data with the obtained endmember sets.It can be proved that RD-SOMP can recover the optimal endmembers from the spectral library under certain conditions.Experimental results demonstrate that the RD-SOMP algorithm outperforms the other algorithms,with a better spectral unmixing accuracy.展开更多
Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spa...Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.展开更多
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop...This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.展开更多
In conventional linear spectral mixture analysis model,a class is represented by a single endmember.However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and ...In conventional linear spectral mixture analysis model,a class is represented by a single endmember.However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results. Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on. Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library. It is essentially the same as multiple endmember spectral unmixing. OMP( orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency. However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one( ANC and ASC),leading to undesirable unmixing results. In order to solve these issues,this paper presents an improved OMP algorithm( fully constraint OMP,FOMP) for multiple endmember hyperspectral sparse unmixing. The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability.The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error( RMSE) to avoid over-fitting,finally pixels are unmixed by their optimal endmember set. The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis( s SMA),and has a strong anti-noise performance. It proves that multiple endmember spectral mixture analysis is more reasonable.展开更多
Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary l...Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.展开更多
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. I...To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-jacent or similar areas.展开更多
Unmixing kinetics in a binary polymer mixture of polyethersulphones with poly (ethylene oxide) by spinodal decomposition has been investigated with time-resolved light scattering and microscope methods. The results sh...Unmixing kinetics in a binary polymer mixture of polyethersulphones with poly (ethylene oxide) by spinodal decomposition has been investigated with time-resolved light scattering and microscope methods. The results showed that time evolution of scattered light intensity is of an exponential growth The maximum growth rate R(qm) of phase separation has been obtained. The experimental data did not satisfy the condition that the plot of R(q)/q^2 vs q^2 should be linear For unmixing system annealing at 30℃ for three hours, its morphology manifested dish structure The experimental data of the Bragg spacing D_m can be correlated with a straight line which expresses the power-law relation, D_m=bl~α展开更多
Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed pixels.In this paper,a deep unmixing network framework is designed to deal with the noi...Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed pixels.In this paper,a deep unmixing network framework is designed to deal with the noise disturbance.It contains two parts:a three⁃dimensional convolutional autoencoder(denoising 3D CAE)which recovers data from noised input,and a restrictive non⁃negative sparse autoencoder(NNSAE)which incorporates a hypergraph regularizer as well as a l2,1⁃norm sparsity constraint to improve the unmixing performance.The deep denoising 3D CAE network was constructed for noisy data retrieval,and had strong capacity of extracting the principle and robust local features in spatial and spectral domains efficiently by training with corrupted data.Furthermore,a part⁃based nonnegative sparse autoencoder with l2,1⁃norm penalty was concatenated,and a hypergraph regularizer was designed elaborately to represent similarity of neighboring pixels in spatial dimensions.Comparative experiments were conducted on synthetic and real⁃world data,which both demonstrate the effectiveness and robustness of the proposed network.展开更多
Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(H...Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.展开更多
Soil salinity is one of the serious environmental problems ravaging the soils of arid and semi-arid region, thereby affecting crop productivity, livestock, increase level of poverty and land degradation. Hyperspectral...Soil salinity is one of the serious environmental problems ravaging the soils of arid and semi-arid region, thereby affecting crop productivity, livestock, increase level of poverty and land degradation. Hyperspectral remote sensing is one of the important techniques to monitor, analyze and estimate the extent and severity of soil salt at regional to local scale. In this study we develop a model for the detection of salt-affected soils in arid and semi-arid regions and in our case it’s Ghannouch, Gabes. We used fourteen spectral indices and six spectral bands extracted from the Hyperion data. Linear Spectral Unmixing technique (LSU) was used in this study to improve the correlation between electrical conductivity and spectral indices and then improve the prediction of soil salinity as well as the reliability of the model. To build the model a multiple linear regression analysis was applied using the best correlated indices. The standard error of the estimate is about 1.57 mS/cm. The results of this study show that hyperion data is accurate and suitable for differentiating between categories of salt affected soils. The generated model can be used for management strategies in the future.展开更多
Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with t...Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with the local minimizers of NMF. We present two novel initialization strategies that is based on CUR decomposition, which is physically meaningful. In the experimental test, NMF with the new initialization method is used to unmix the urban scene which was captured by airborne visible/infrared imaging spectrometer (AVIRIS) in 1997, numerical results show that the initialization methods work well.展开更多
Soil salinization and water scarcity are main restrictive factors for irrigated agriculture development in arid regions.Knowing dynamics of soil water and salt content is an important antecedent in remediating saliniz...Soil salinization and water scarcity are main restrictive factors for irrigated agriculture development in arid regions.Knowing dynamics of soil water and salt content is an important antecedent in remediating salinized soils and optimizing irrigation management.Previous studies mostly used remote sensing technologies to individually monitor water or salt content dynamics in agricultural areas.Their ability to asses different levels of crop water and salt management has been less explored.Therefore,how to extract effective diagnostic features from remote sensing images derived spectral information is crucial for accurately estimating soil water and salt content.In this study,Linear spectral unmixing method(LSU)was used to obtain the contribution of soil water and salt to each band spectrum(abundance),and endmember spectra from Sentinel-2 images.Calculating spectral indices and selecting optimal spectal combination were individually based on soil water and salt endmember spectra.The estimation models were constructed using six machine learning algorithms:BP Neural Network(BPNN),Support Vector Regression(SVR),Partial Least Squares Regression(PLSR),Random Forest Regression(RFR),Gradient Boost Regression Tree(GBRT),and eXtreme Gradient Boosting tree(XGBoost).The results showed that the spectral indices calculated from endmember spectra were able to effectively characterize the response of crop spectral properties to soil water and salt,which circumvent spectral ambiguity induced by water-salt mixing.NDRE spectral index was a reliable indicator for estimating water and salt content,with determination coefficients(R2)being 0.55 and 0.57,respectively.Compared to other models,LSU-XGBoost model achieved the best performance.This model properly reflected the process of soil water-salt dynamics in farmland during crop growth period.This study provided new methods and ideas for soil water-salt estimation in dry irrigated agricultural areas,and provided decision support for gover-nance of salinized land and optimal management of irrigation.展开更多
This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment.The sub-pixel distribution and quantity of alterati...This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment.The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing(LSU)and mixture tuned matched filtering(MTMF)algorithms in the Sarduiyeh area,SE Kerman,Iran,using the visible-near infrared(VNIR)and short wave infrared(SWIR)bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)instrument and the results were compared to evaluate the efficiency of methods.Three groups of alteration minerals were identified:(1)pyrophylite-alunite(2)sericite-kaolinite,and(3)chlorite-calcite-epidote.Results showed that high abundances within pixels were successfully corresponded to the alteration zones.In addition,a number of unreported altered areas were identified.Field observations and X-ray diffraction(XRD)analysis of field samples confirmed the dominant mineral phases identified remotely.Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%,respectively.It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets,rather than all the elements in the scene,the MTMF algorithm could be proposed.展开更多
The objective function of classical nonnegative matrix factorization (NMF) is non-convexity, which affects the obtaining of optimal solutions. In this paper, we proposed a NMF algorithm, and this algorithm was based...The objective function of classical nonnegative matrix factorization (NMF) is non-convexity, which affects the obtaining of optimal solutions. In this paper, we proposed a NMF algorithm, and this algorithm was based on the constraint of endmember spectral correlation minimization and endmember spectral difference max- imization. The size of endrnember spectral overall- correlation was measured by the correlation function, and correlation function was defined as the sum of the absolute values of every two correlation coefficient between the spectra. In the difference constraint of the endmember spectra, the mutation of matrix trace was slowed down by introducing the natural logarithm function. Combining the image decomposition error with the influences of end- member spectra, in the objective function the projection gradient was used to achieve NMF. The effectiveness of algorithm was verified by the simulated hyperspeetral images and real hyperspectral images.展开更多
We present a novel fluorescence spectral unmixing based on target-to-background separation preprocessing, which effectively separates the multi-target fluorescence from all background autofluorescence(BF)without any h...We present a novel fluorescence spectral unmixing based on target-to-background separation preprocessing, which effectively separates the multi-target fluorescence from all background autofluorescence(BF)without any hardware-based BF acquisition and tissue specific BF estimation. Specifically, we first enhance the intrinsic accumulation contrast in target-to-background fluorescence using h-dome transformation; then separate multi-target fluorescence areas from the background in sparse multispectral data utilizing kernel maximum autocorrelation factor analysis; we further use fast marching-based image inpainting method to patch up the removed target fluorescence areas and reconstruct the multispectral BF; with the BF matrix being subtracted from the original data, the multi-target fluorophores are easily unmixed from the subtracted data using multivariate curve resolution-alternating least squares method. In two preliminary in-vivo experiments, the proposed method demonstrated excellent performance to unmix multi-target fluorescences while other state-of-art unmixing methods failed to get desired results.展开更多
Vegetation phenology is commonly studied using time series of multispectral vegetation indices derived from satellite imagery.Differences in reflectance among land-cover and/or plant functional types are obscured by s...Vegetation phenology is commonly studied using time series of multispectral vegetation indices derived from satellite imagery.Differences in reflectance among land-cover and/or plant functional types are obscured by sub-pixel mixing,and so phenological analyses have typically sought to maximize the compositional purity of input satellite data by increasing spatial resolution.We present an alternative method to mitigate this‘mixed-pixel problem’and extract the phenological behavior of individual land-cover types inferentially,by inverting the linear mixture model traditionally used for sub-pixel land-cover mapping.Parameterized using genetic algorithms,the method takes advantage of the discriminating capacity of calibrated surface reflectance measurements in red,near infrared,and short-wave infrared wavelengths,as well as the Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index.In simulation,the unmixing procedure reproduced the reflectances and phenological signals of grass,crop,and deciduous forests with high fidelity(RMSE<0.007 NDVI);and in empirical tests,the algorithm extracted the phenological characteristics of evergreen trees and seasonal grasses in a semi-arid savannah.The approach shows potential for a wide range of ecological applications,including detection of differential responses to climate,soil,or other factors among vegetation types.展开更多
基金supported by the National Natural Science Foundations of China(Nos.61401200,61201365)
文摘The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the spectral library.Under such circumstances,a novel greedy algorithm for sparse unmixing of hyperspectral data is presented,termed the recursive dictionary-based simultaneous orthogonal matching pursuit(RD-SOMP).The algorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks.At each iteration of the block,the spectral library is projected into the orthogonal subspace and renormalized,which can reduce the correlation of the spectral library.Then RD-SOMP selects a new endmember with the maximum correlation between the current residual and the orthogonal subspace of the spectral library.The endmembers picked in all the blocks are associated as the endmember sets of the whole hyperspectral data.Finally,the abundances are estimated using the whole hyperspectral data with the obtained endmember sets.It can be proved that RD-SOMP can recover the optimal endmembers from the spectral library under certain conditions.Experimental results demonstrate that the RD-SOMP algorithm outperforms the other algorithms,with a better spectral unmixing accuracy.
基金Under the auspices of National Natural Science Foundation of China (No. 40971189)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)China Postdoctoral Science Foundation (No. 20100471276)
文摘Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.
基金Supported by the National Natural Science Foundation of China ( No. 60872083 ) and the National High Technology Research and Development Program of China (No. 2007AA12Z149).
文摘This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61405041,61571145)the Key Program of Heilongjiang Natural Science Foundation(Grant No.ZD201216)+2 种基金the Program Excellent Academic Leaders of Harbin(Grant No.RC2013XK009003)the China Postdoctoral Science Foundation(Grant No.2014M551221)the Heilongjiang Postdoctoral Science Found(Grant No.LBH-Z13057)
文摘In conventional linear spectral mixture analysis model,a class is represented by a single endmember.However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results. Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on. Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library. It is essentially the same as multiple endmember spectral unmixing. OMP( orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency. However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one( ANC and ASC),leading to undesirable unmixing results. In order to solve these issues,this paper presents an improved OMP algorithm( fully constraint OMP,FOMP) for multiple endmember hyperspectral sparse unmixing. The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability.The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error( RMSE) to avoid over-fitting,finally pixels are unmixed by their optimal endmember set. The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis( s SMA),and has a strong anti-noise performance. It proves that multiple endmember spectral mixture analysis is more reasonable.
基金supported by the National Natural Science Foundation of China(61801513).
文摘Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.
文摘To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-jacent or similar areas.
文摘Unmixing kinetics in a binary polymer mixture of polyethersulphones with poly (ethylene oxide) by spinodal decomposition has been investigated with time-resolved light scattering and microscope methods. The results showed that time evolution of scattered light intensity is of an exponential growth The maximum growth rate R(qm) of phase separation has been obtained. The experimental data did not satisfy the condition that the plot of R(q)/q^2 vs q^2 should be linear For unmixing system annealing at 30℃ for three hours, its morphology manifested dish structure The experimental data of the Bragg spacing D_m can be correlated with a straight line which expresses the power-law relation, D_m=bl~α
基金Sponsored by the National Natural Science Foundation of China(Grant No.61876054)the National Key Research and Development Program of China(Grant No.2019YFC0117400).
文摘Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed pixels.In this paper,a deep unmixing network framework is designed to deal with the noise disturbance.It contains two parts:a three⁃dimensional convolutional autoencoder(denoising 3D CAE)which recovers data from noised input,and a restrictive non⁃negative sparse autoencoder(NNSAE)which incorporates a hypergraph regularizer as well as a l2,1⁃norm sparsity constraint to improve the unmixing performance.The deep denoising 3D CAE network was constructed for noisy data retrieval,and had strong capacity of extracting the principle and robust local features in spatial and spectral domains efficiently by training with corrupted data.Furthermore,a part⁃based nonnegative sparse autoencoder with l2,1⁃norm penalty was concatenated,and a hypergraph regularizer was designed elaborately to represent similarity of neighboring pixels in spatial dimensions.Comparative experiments were conducted on synthetic and real⁃world data,which both demonstrate the effectiveness and robustness of the proposed network.
基金National Natural Science Foundation of China(No.62001098)Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020D-33)。
文摘Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.
文摘Soil salinity is one of the serious environmental problems ravaging the soils of arid and semi-arid region, thereby affecting crop productivity, livestock, increase level of poverty and land degradation. Hyperspectral remote sensing is one of the important techniques to monitor, analyze and estimate the extent and severity of soil salt at regional to local scale. In this study we develop a model for the detection of salt-affected soils in arid and semi-arid regions and in our case it’s Ghannouch, Gabes. We used fourteen spectral indices and six spectral bands extracted from the Hyperion data. Linear Spectral Unmixing technique (LSU) was used in this study to improve the correlation between electrical conductivity and spectral indices and then improve the prediction of soil salinity as well as the reliability of the model. To build the model a multiple linear regression analysis was applied using the best correlated indices. The standard error of the estimate is about 1.57 mS/cm. The results of this study show that hyperion data is accurate and suitable for differentiating between categories of salt affected soils. The generated model can be used for management strategies in the future.
文摘Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with the local minimizers of NMF. We present two novel initialization strategies that is based on CUR decomposition, which is physically meaningful. In the experimental test, NMF with the new initialization method is used to unmix the urban scene which was captured by airborne visible/infrared imaging spectrometer (AVIRIS) in 1997, numerical results show that the initialization methods work well.
基金the National Natural Science Foundation of China for the project(No.52279047).
文摘Soil salinization and water scarcity are main restrictive factors for irrigated agriculture development in arid regions.Knowing dynamics of soil water and salt content is an important antecedent in remediating salinized soils and optimizing irrigation management.Previous studies mostly used remote sensing technologies to individually monitor water or salt content dynamics in agricultural areas.Their ability to asses different levels of crop water and salt management has been less explored.Therefore,how to extract effective diagnostic features from remote sensing images derived spectral information is crucial for accurately estimating soil water and salt content.In this study,Linear spectral unmixing method(LSU)was used to obtain the contribution of soil water and salt to each band spectrum(abundance),and endmember spectra from Sentinel-2 images.Calculating spectral indices and selecting optimal spectal combination were individually based on soil water and salt endmember spectra.The estimation models were constructed using six machine learning algorithms:BP Neural Network(BPNN),Support Vector Regression(SVR),Partial Least Squares Regression(PLSR),Random Forest Regression(RFR),Gradient Boost Regression Tree(GBRT),and eXtreme Gradient Boosting tree(XGBoost).The results showed that the spectral indices calculated from endmember spectra were able to effectively characterize the response of crop spectral properties to soil water and salt,which circumvent spectral ambiguity induced by water-salt mixing.NDRE spectral index was a reliable indicator for estimating water and salt content,with determination coefficients(R2)being 0.55 and 0.57,respectively.Compared to other models,LSU-XGBoost model achieved the best performance.This model properly reflected the process of soil water-salt dynamics in farmland during crop growth period.This study provided new methods and ideas for soil water-salt estimation in dry irrigated agricultural areas,and provided decision support for gover-nance of salinized land and optimal management of irrigation.
文摘This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment.The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing(LSU)and mixture tuned matched filtering(MTMF)algorithms in the Sarduiyeh area,SE Kerman,Iran,using the visible-near infrared(VNIR)and short wave infrared(SWIR)bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)instrument and the results were compared to evaluate the efficiency of methods.Three groups of alteration minerals were identified:(1)pyrophylite-alunite(2)sericite-kaolinite,and(3)chlorite-calcite-epidote.Results showed that high abundances within pixels were successfully corresponded to the alteration zones.In addition,a number of unreported altered areas were identified.Field observations and X-ray diffraction(XRD)analysis of field samples confirmed the dominant mineral phases identified remotely.Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%,respectively.It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets,rather than all the elements in the scene,the MTMF algorithm could be proposed.
文摘The objective function of classical nonnegative matrix factorization (NMF) is non-convexity, which affects the obtaining of optimal solutions. In this paper, we proposed a NMF algorithm, and this algorithm was based on the constraint of endmember spectral correlation minimization and endmember spectral difference max- imization. The size of endrnember spectral overall- correlation was measured by the correlation function, and correlation function was defined as the sum of the absolute values of every two correlation coefficient between the spectra. In the difference constraint of the endmember spectra, the mutation of matrix trace was slowed down by introducing the natural logarithm function. Combining the image decomposition error with the influences of end- member spectra, in the objective function the projection gradient was used to achieve NMF. The effectiveness of algorithm was verified by the simulated hyperspeetral images and real hyperspectral images.
基金the Small Animal Imaging Project supported by Geneway Biotech International Trading Co.,Ltd.(No.06-545)the National Natural Science Foundation of China(Nos.61271320,60872102 and 60402021)
文摘We present a novel fluorescence spectral unmixing based on target-to-background separation preprocessing, which effectively separates the multi-target fluorescence from all background autofluorescence(BF)without any hardware-based BF acquisition and tissue specific BF estimation. Specifically, we first enhance the intrinsic accumulation contrast in target-to-background fluorescence using h-dome transformation; then separate multi-target fluorescence areas from the background in sparse multispectral data utilizing kernel maximum autocorrelation factor analysis; we further use fast marching-based image inpainting method to patch up the removed target fluorescence areas and reconstruct the multispectral BF; with the BF matrix being subtracted from the original data, the multi-target fluorophores are easily unmixed from the subtracted data using multivariate curve resolution-alternating least squares method. In two preliminary in-vivo experiments, the proposed method demonstrated excellent performance to unmix multi-target fluorescences while other state-of-art unmixing methods failed to get desired results.
基金This work was supported by the National Aeronautics and Space Administration(NASA)Biodiversity and Ecological Forecasting Programs[grant number NNX11AR65G].
文摘Vegetation phenology is commonly studied using time series of multispectral vegetation indices derived from satellite imagery.Differences in reflectance among land-cover and/or plant functional types are obscured by sub-pixel mixing,and so phenological analyses have typically sought to maximize the compositional purity of input satellite data by increasing spatial resolution.We present an alternative method to mitigate this‘mixed-pixel problem’and extract the phenological behavior of individual land-cover types inferentially,by inverting the linear mixture model traditionally used for sub-pixel land-cover mapping.Parameterized using genetic algorithms,the method takes advantage of the discriminating capacity of calibrated surface reflectance measurements in red,near infrared,and short-wave infrared wavelengths,as well as the Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index.In simulation,the unmixing procedure reproduced the reflectances and phenological signals of grass,crop,and deciduous forests with high fidelity(RMSE<0.007 NDVI);and in empirical tests,the algorithm extracted the phenological characteristics of evergreen trees and seasonal grasses in a semi-arid savannah.The approach shows potential for a wide range of ecological applications,including detection of differential responses to climate,soil,or other factors among vegetation types.