A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered ...The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.展开更多
We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low freq...We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.展开更多
Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical...Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.展开更多
An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab s...An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab software and Levenberg–Marquardt algorithm.The concept of the average optical coefficient is proposed in this paper,which is helpful to understand the distribution of the scattering photon from tumor.The reconstructive¯µs by the trained network is reasonable for showing the changes of photon number transporting inside tumor tissue.It realized the fast reconstruction of tissue optical properties and provided optical OT with a new method.展开更多
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ...The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.展开更多
Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Ba...Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.展开更多
An evolutionary prisoner's dilemma game is investigated on two-layered complex networks respectively representing interaction and learning networks in one and two dimensions. A parameter q is introduced to denote the...An evolutionary prisoner's dilemma game is investigated on two-layered complex networks respectively representing interaction and learning networks in one and two dimensions. A parameter q is introduced to denote the correlation degree between the two-layered networks. Using Monte Carlo simulations we studied the effects of the correlation degree on cooperative behaviour and found that the cooperator density nontrivially changes with q for different payoff parameter values depending on the detailed strategy updating and network dimension. An explanation for the obtained results is provided.展开更多
The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required ...The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system. Based on Darcy’s law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.展开更多
We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly...We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models.We used diffusion theory to generate optical data from a two-layered distribution of relevant tissue absorbers,namely,oxyhemoglobin,deoxyhemoglobin,water,and lipids,with a top-layer thickness in the range 1–15 mm.The generated data consisted of broadband continuous-wave(CW)diffuse reflectance in the wavelength range 650–1024 nm,and frequency-domain(FD)diffuse reflectance at 690 and 830 nm;two source-detector distances of 25 and 35mm were used to simulate a dual-slope technique.The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coeffcients at 690 and 830nm(from FD data)and effective absorption spectra in the range 650–1024nm(from CW data).The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin,as well as water and lipid concentrations.For absolute values,it was found that the effective hemoglobin parameters are typically representative of the bottom layer,whereas water and lipid represent some average of the respective concentrations in the two layers.For concentration changes,lipid showed a significant cross-talk with other absorber concentrations,thus indicating that lipid dynamics obtained in these conditions may not be reliable.These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity.展开更多
Several environmental changes can induce an underground hole,leading to failures of non-ground infrastructure,such as pavements.Under a continued overload of traffic action on the pavement,the hole can potentially col...Several environmental changes can induce an underground hole,leading to failures of non-ground infrastructure,such as pavements.Under a continued overload of traffic action on the pavement,the hole can potentially collapse,leading to creation of potholes.This phenomenon is commonly known as a trapdoor problem.Even though there are several previous works considering this problem,the stability solutions of trapdoors in two-layered soils have not yet been studied.To estimate the undrained stability of active trapdoors in two-layered clays under plane strain conditions,numerical solutions based on the finite element method have been developed.The influence parameters include the coverage depth of the trapdoor,and the thickness and undrained shear strength of the clay layers.The effects of these parameters on the stability of active trapdoors as well as their associated failure mechanisms are examined and discussed in this paper.The solutions are presented in the form of dimensionless charts that can be used for the design of trapdoor systems in two-layered clays with different thicknesses and undrained shear strengths.展开更多
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT...The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper...In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.展开更多
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy o...As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
基金financially supported by the Ministry of Education of China(Grant No.6141A02022337)
文摘The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11834008,11632004,11474361 and 11622430
文摘We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100203110016)the Fundamental Research Funds for the Central Universities,China (Grant No. K50510070001)
文摘Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.
基金National Nature Sci-ence Foundation of China(Grant No.30671997).
文摘An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab software and Levenberg–Marquardt algorithm.The concept of the average optical coefficient is proposed in this paper,which is helpful to understand the distribution of the scattering photon from tumor.The reconstructive¯µs by the trained network is reasonable for showing the changes of photon number transporting inside tumor tissue.It realized the fast reconstruction of tissue optical properties and provided optical OT with a new method.
基金supported by the NSFC (grant Nos. 41631072, 41721003, 41874023, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (grant No. B17033)the DAAD Thematic Network Project (grant No. 57173947)
文摘The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.
文摘Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.
基金supported by the National Natural Science Foundation of China (Grant No. 10775060)
文摘An evolutionary prisoner's dilemma game is investigated on two-layered complex networks respectively representing interaction and learning networks in one and two dimensions. A parameter q is introduced to denote the correlation degree between the two-layered networks. Using Monte Carlo simulations we studied the effects of the correlation degree on cooperative behaviour and found that the cooperator density nontrivially changes with q for different payoff parameter values depending on the detailed strategy updating and network dimension. An explanation for the obtained results is provided.
文摘The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system. Based on Darcy’s law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.
基金supported by National Institutes of Health(Nos.R01 NS095334,R01 EB029414).
文摘We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models.We used diffusion theory to generate optical data from a two-layered distribution of relevant tissue absorbers,namely,oxyhemoglobin,deoxyhemoglobin,water,and lipids,with a top-layer thickness in the range 1–15 mm.The generated data consisted of broadband continuous-wave(CW)diffuse reflectance in the wavelength range 650–1024 nm,and frequency-domain(FD)diffuse reflectance at 690 and 830 nm;two source-detector distances of 25 and 35mm were used to simulate a dual-slope technique.The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coeffcients at 690 and 830nm(from FD data)and effective absorption spectra in the range 650–1024nm(from CW data).The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin,as well as water and lipid concentrations.For absolute values,it was found that the effective hemoglobin parameters are typically representative of the bottom layer,whereas water and lipid represent some average of the respective concentrations in the two layers.For concentration changes,lipid showed a significant cross-talk with other absorber concentrations,thus indicating that lipid dynamics obtained in these conditions may not be reliable.These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity.
基金supported by the Thailand Research Fund[Grant no.DBG-6180004]the Ratchadapisek Sompoch Endowment Fund(2020),Chulalongkorn University[763014 Climate Change and Disaster Management Cluster].
文摘Several environmental changes can induce an underground hole,leading to failures of non-ground infrastructure,such as pavements.Under a continued overload of traffic action on the pavement,the hole can potentially collapse,leading to creation of potholes.This phenomenon is commonly known as a trapdoor problem.Even though there are several previous works considering this problem,the stability solutions of trapdoors in two-layered soils have not yet been studied.To estimate the undrained stability of active trapdoors in two-layered clays under plane strain conditions,numerical solutions based on the finite element method have been developed.The influence parameters include the coverage depth of the trapdoor,and the thickness and undrained shear strength of the clay layers.The effects of these parameters on the stability of active trapdoors as well as their associated failure mechanisms are examined and discussed in this paper.The solutions are presented in the form of dimensionless charts that can be used for the design of trapdoor systems in two-layered clays with different thicknesses and undrained shear strengths.
基金supported by the National Natural Science Foundation of China(Nos.81271618 and 81371602)the Tianjin Municipal Government of China(Nos.12JCQNJC09400 and 13JCZDJC28000)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110056)
文摘The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
文摘In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
基金funded by the National Key R&D Program of China,grant number 2019YFB1505400.
文摘As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.