In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-...In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.展开更多
In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-...In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.展开更多
基金Project supported by the NSFC(No.10171111)and the Foundation of Advanced Research Center,zhongshan University.The second author is partially supported by a grant from Australia Research Council and NSF of Guangdong Province
基金Xu Jingshi was partially supported by NSF of Hunan in ChinaYang DaChun was partially supported by NNSF(10271015)and SEDF of China
文摘In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.
文摘In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
基金partially supported by Grant-in-Aid for Scientific Research(C)(No.23540228),Japan Society for the Promotion of Science
文摘In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.