Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at theheated...Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at theheated wall was assumed. The numerical program code interms of vorticity, stream function, axial velocity com ponent and energy equations was written based on a finite volume method. Based on the numerical results, the flow and temperature field were given, and the effects of Dean and Prandtl numbers on flow and heat transfer were ex amined, and the correlations of flow resistance and mean Nusselt number were developed for the jacket. The results show that the structure of secondary flow is steady two vortices in the investigated range of dimensionless curvatureratio and Reynolds number. Two peaks of local Nusselt number increase significantly with Prandtl and Dean num ber increasing, but the local Nusselt numbers near two ends and at the center of the heated wall increase only slightly. The center and two ends of heated wall are the poor positions for heat transfer in the jacket. Compared with the outer half coil jacket at the same area of heated wall, curvature radius, Reynolds number and Prandtl number, e jacket of triangular flow chmnel has lower flow resistance and less mean Nusselt number.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
A huge triangle-shaped tectonic region in eastern Asia plays host to numerous major earth- quakes. The three boundaries of this region, which contains plateaus, mountains, and intermountain basins, are roughly the Him...A huge triangle-shaped tectonic region in eastern Asia plays host to numerous major earth- quakes. The three boundaries of this region, which contains plateaus, mountains, and intermountain basins, are roughly the Himalayan arc, the Tianshan-Baikal, and longitude line -105°E. Within this trian- gular region, tectonism is intense and major deformation occurs both between crustal blocks and within most of them. Outside of this region, rigid blocks move as a whole with relatively few major earthquakes and relatively weak Cenozoic deformation. On a large tectonic scale, the presence of this broad region of intraplate deformation results from dynamic interactions between the Indian, Philippine Sea-West Pacific, and Eurasian plates, as well as the influence of deep-level mantle flow. The Indian subcontinent, which continues to move northwards at -40 mm/a since its collision with Eurasia, has plunged beneath Tibet, resulting in various movements and deformations along the Himalayan arc that diffuse over a long distance into the hinterland of Asia. The northward crustal escape of Asia from the Himalayan collisional zone turns eastwards and southeastwards along 95°-100°E longitude and defines the eastern Himalayan syntaxis. At the western Himalayan syntaxis, the Pamirs continue to move into central Asia, leading to crustal deformation and earthquakes that are largely accommodated by old EW or NW trending faults in the bordering areas between China, Mongolia, and Russia, and are restricted by the stable landmass northwest of the Tianshan-Altai-Baikal region. The subduction of the Philippine and Pacific plates under the Eurasian continent has generated a very long and narrow seismic zone along trenches and island arcs in the marginal seas while imposing only slight horizontal compression on the Asian continent that does not impede the eastward motion of eastern Asia. In the third dimension, there may be southeastward deep mantle flow beneath most of Eurasia that reaches the marginal seas and may contribute to extension along the eastern margin of Eurasia.展开更多
基金Supported by the Speciai Pogram forLocal Universities Development of Central Finance of China (2050205), the National Natural Science Foundation of China (21106086), and the Program for Liaoning Excellent Talents in University (LJQ2012035).
文摘Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at theheated wall was assumed. The numerical program code interms of vorticity, stream function, axial velocity com ponent and energy equations was written based on a finite volume method. Based on the numerical results, the flow and temperature field were given, and the effects of Dean and Prandtl numbers on flow and heat transfer were ex amined, and the correlations of flow resistance and mean Nusselt number were developed for the jacket. The results show that the structure of secondary flow is steady two vortices in the investigated range of dimensionless curvatureratio and Reynolds number. Two peaks of local Nusselt number increase significantly with Prandtl and Dean num ber increasing, but the local Nusselt numbers near two ends and at the center of the heated wall increase only slightly. The center and two ends of heated wall are the poor positions for heat transfer in the jacket. Compared with the outer half coil jacket at the same area of heated wall, curvature radius, Reynolds number and Prandtl number, e jacket of triangular flow chmnel has lower flow resistance and less mean Nusselt number.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
基金supported by the National Development Program of Major Basic Research(973 Program)(2008CB425703)
文摘A huge triangle-shaped tectonic region in eastern Asia plays host to numerous major earth- quakes. The three boundaries of this region, which contains plateaus, mountains, and intermountain basins, are roughly the Himalayan arc, the Tianshan-Baikal, and longitude line -105°E. Within this trian- gular region, tectonism is intense and major deformation occurs both between crustal blocks and within most of them. Outside of this region, rigid blocks move as a whole with relatively few major earthquakes and relatively weak Cenozoic deformation. On a large tectonic scale, the presence of this broad region of intraplate deformation results from dynamic interactions between the Indian, Philippine Sea-West Pacific, and Eurasian plates, as well as the influence of deep-level mantle flow. The Indian subcontinent, which continues to move northwards at -40 mm/a since its collision with Eurasia, has plunged beneath Tibet, resulting in various movements and deformations along the Himalayan arc that diffuse over a long distance into the hinterland of Asia. The northward crustal escape of Asia from the Himalayan collisional zone turns eastwards and southeastwards along 95°-100°E longitude and defines the eastern Himalayan syntaxis. At the western Himalayan syntaxis, the Pamirs continue to move into central Asia, leading to crustal deformation and earthquakes that are largely accommodated by old EW or NW trending faults in the bordering areas between China, Mongolia, and Russia, and are restricted by the stable landmass northwest of the Tianshan-Altai-Baikal region. The subduction of the Philippine and Pacific plates under the Eurasian continent has generated a very long and narrow seismic zone along trenches and island arcs in the marginal seas while imposing only slight horizontal compression on the Asian continent that does not impede the eastward motion of eastern Asia. In the third dimension, there may be southeastward deep mantle flow beneath most of Eurasia that reaches the marginal seas and may contribute to extension along the eastern margin of Eurasia.