Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
Copper serpentines used in gas heaters are currently coated with lead-tin alloy using hot-dip technology where copper is immersed in molten lead (98%)-Tin at about 400°C. The major drawback of this technique i...Copper serpentines used in gas heaters are currently coated with lead-tin alloy using hot-dip technology where copper is immersed in molten lead (98%)-Tin at about 400°C. The major drawback of this technique is the pollution resulted from lead vapors which cause much harm to the labors in the unit. The present work investigates an eco-friendly plating technique to replace the currently used technology. Electroless plating of copper samples with lead or Lead (98%)-Tin alloy is carried out from a plating bath contained lead salt, tin salt, reducing agent and stabilizing agent. The parameters affecting the coating quality such as the plating time, temperature and bath composition were optimized. The chemical analysis and coating morphology of the formed coatings are examined by XRD, SEM and EDS to reach the best bath composition as well as the best conditions to coat copper with lead or lead-tin electrolessly. The electrochemical properties of copper and copper coated samples are also examined using electrochemical impedance spectroscopy.展开更多
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
文摘Copper serpentines used in gas heaters are currently coated with lead-tin alloy using hot-dip technology where copper is immersed in molten lead (98%)-Tin at about 400°C. The major drawback of this technique is the pollution resulted from lead vapors which cause much harm to the labors in the unit. The present work investigates an eco-friendly plating technique to replace the currently used technology. Electroless plating of copper samples with lead or Lead (98%)-Tin alloy is carried out from a plating bath contained lead salt, tin salt, reducing agent and stabilizing agent. The parameters affecting the coating quality such as the plating time, temperature and bath composition were optimized. The chemical analysis and coating morphology of the formed coatings are examined by XRD, SEM and EDS to reach the best bath composition as well as the best conditions to coat copper with lead or lead-tin electrolessly. The electrochemical properties of copper and copper coated samples are also examined using electrochemical impedance spectroscopy.