期刊文献+
共找到19,767篇文章
< 1 2 250 >
每页显示 20 50 100
Spatial distribution of vegetation carbon stock among different organs over the Tibetan Plateau:on an intensive field survey
1
作者 Weixiang Cai Nianpeng He Li Xu 《Journal of Forestry Research》 2025年第1期311-320,共10页
Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carb... Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carbon balance.However,the spatial distribution of regional C_(VEG) is not available remains highly uncertain due to lack of systematic research,especially for different organs.Here,we investigated the spatial distribution patterns and driving factors of C_(VEG) among different plant organs(leaf,branch,trunk and root)by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020.The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg^(-1),with the highest in branches and the lowest in roots.Among the different plant functional groups,the highest C_(VEG) was found in evergreen coniferous forests,and the lowest in desert grasslands,with an average C_(VEG) of 1603.98 g m^(-2).C_(VEG) increased spatially from northwest to southeast over the Tibetan Plateau,with MAP being the dominant factor.Furthermore,the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types.Based on the comprehensive field survey dataset,the Random Forest model effectively predicted and mapped the spatial distribution of C_(VEG)(including aboveground,belowground,and the total biomass carbon density)over the Tibetan Plateau with notable accuracy(validation R2 values were 71%,56%,and 64%for C_(AGB),C_(BGB),and C_(VEG),respectively)at a spatial resolution of 1 km×1 km.Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future. 展开更多
关键词 tibetan Plateau VEGETATION Carbon density Carbon stock Machine learning
在线阅读 下载PDF
Temporal stability responses to nitrogen addition in Tibetan alpine grasslands:A community composition perspective
2
作者 Ning Zong Peili Shi 《Journal of Integrative Agriculture》 2025年第3期871-884,共14页
Plant community composition typically undergoes progressive changes along environmental gradients.However,most experimental studies have focused on individual communities,so it remains unclear how exogenous nutrient i... Plant community composition typically undergoes progressive changes along environmental gradients.However,most experimental studies have focused on individual communities,so it remains unclear how exogenous nutrient inputs affect the stability of plant communities along environmental gradients.Along a rainfall gradient on the northern Tibetan Plateau,we conducted an 8-year nitrogen(N)addition experiment in four alpine grasslands:alpine desert steppe(ADS),alpine steppe(AS),alpine meadow steppe(AMS),alpine meadow(AM),and we used twoway ANOVA to examine the effects of N addition on the temporal stability of these different alpine grasslands.We found that community aboveground biomass showed saturation trends in AM and AMS with increasing N gradients,while there was no change in AS and a gradual increase in ADS.The temporal stability showed different patterns of gradual decreases in ADS and AM,and a unimodal trend in AMS with increasing N gradients.However,N addition had no effect on the temporal stability of AS.Dominant species stability was the controlling factor for alpine grasslands along the transect,while the effect of asynchrony gradually increased with decreasing precipitation.These findings highlight that community composition,especially the dominant species,along the environmental gradient can mediate the effects of N inputs on community temporal stability.Thus,the conservation and restoration of the dominant species are particularly important under future scenarios of increased atmospheric N deposition. 展开更多
关键词 community composition dominant species environmental gradient plant abundance group tibetan Plateau
在线阅读 下载PDF
Impacts of ENSO on wintertime total column ozone over the Tibetan Plateau based on the historical simulations of community Earth system model
3
作者 XiaoWen Yuan YuZhen Wang +4 位作者 Yang Li YuHao Liu WeiLing Xu LiZi Wang RuiHan Deng 《Earth and Planetary Physics》 2025年第2期424-434,共11页
The ozone over the Tibetan Plateau(TP) plays an important role in protecting the local ecology by absorbing ultraviolet solar rays. The El Nino-Southern Oscillation(ENSO), recognized as the strongest interannual clima... The ozone over the Tibetan Plateau(TP) plays an important role in protecting the local ecology by absorbing ultraviolet solar rays. The El Nino-Southern Oscillation(ENSO), recognized as the strongest interannual climate phenomenon globally, can create ozone variations over the TP. Based on the historical experimental simulation results of two Community Earth System Models(i.e. CESM2-WACCM and CESM2-WACCM-FV2) that include the coupling process of stratospheric chemistry-radiation-dynamics, this study analyzes the impact of ENSO on the wintertime total ozone column(TCO) over the TP, as well as its physical processes, from 1979 to 2014. When compared to observations, the results show that the two models can basically simulate the spatial distribution of the climate state and standard deviation of the TP TCO. In the two models, CESM2-WACCM performs better. During the winter when the ENSO signal is strongest, its warm phase, El Nino, cools the tropospheric temperature over the TP by modifying the atmospheric circulation, which induces a decrease in the tropopause height. Such decreases in the tropopause height are responsible for the TP TCO increase. The cool phase La Nina is responsible for a TCO decrease over the TP, in a manner resembling the El Nino but with the opposite signal. Our results are consistent with previous observational analysis, and the relevant research provides valuable scientific insights for evaluating and improving the Earth System Model that incorporates the coupling process of stratospheric chemistry-radiation-dynamics. 展开更多
关键词 ENSO tibetan Plateau total column ozone wintertime CESM2-WACCM CESM2-WACCM-FV2
在线阅读 下载PDF
Tectonic Evolution of the Ailao Shan-Red River Fault since the Middle Miocene from Apatite Fission Track Thermochronology and its Implications for Tibetan Plateau Growth
4
作者 GONG Wei LI Chaoyang +4 位作者 JIANG Liang WANG Yuyan LI Hongyu ZHAO Lihong ZHAO Faqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期126-143,共18页
The temporal and spatial evolution of the Ailao Shan-Red River(ASRR)fault zone,which serves as an important accommodation zone for the extrusion and escape of the Southeastern Tibetan Plateau,is crucial for analyzing ... The temporal and spatial evolution of the Ailao Shan-Red River(ASRR)fault zone,which serves as an important accommodation zone for the extrusion and escape of the Southeastern Tibetan Plateau,is crucial for analyzing the uplift and growth of the plateau.Based on the petrology and apatite fission track analysis,the tectonic history and active pattern of the ASRR fault zone since the middle Miocene are determined in this study.The ASRR fault zone exhibits 12-8Ma and 8-4 Ma rapid cooling phases since the middle Miocene.The 12-8 Ma and 8-4 Ma cooling may imply that the dextral movement of the ASRR fault zone presents a migration trend from northwest to southeast,accompanied by the weakening of the activity intensity,which is directly related to deformation processes,including extrusion boundary migration and active tectonic movements of the southeastern Tibetan Plateau,since the middle-late Miocene. 展开更多
关键词 apatite fission track extrusion tectonics middle Miocene Ailao Shan-Red River fault zone tibetan Plateau
在线阅读 下载PDF
Short-term P addition may improve the stimulating effects of N deposition on N_(2)O emissions in alpine grasslands on the Qinghai-Tibetan Plateau
5
作者 Jiannan Xiao Shikui Dong +7 位作者 Hao Shen Ran Zhang Hang Shi Fencai He Wei Li Xiaoyan Li YuLi Chengxiang Ding 《Journal of Integrative Agriculture》 2025年第3期900-912,共13页
The response of N_(2)O emissions to nitrogen(N)addition is usually positive,but its response to phosphorus(P)addition varies,and the underlying mechanisms for the changes in N_(2)O emissions remain unclear.We conducte... The response of N_(2)O emissions to nitrogen(N)addition is usually positive,but its response to phosphorus(P)addition varies,and the underlying mechanisms for the changes in N_(2)O emissions remain unclear.We conducted field studies to examine the response of N_(2)O emissions to N and P addition over two years in three typical alpine grasslands,alpine meadow(AM),alpine steppe(AS),and alpine cultivated grassland(CG)on the Qinghai-Tibet Plateau(QTP).Our results showed consistent increases in N_(2)O emissions under N addition alone or with P addition,and insignificant change in N_(2)O emissions under P addition alone in all three grasslands.N addition increased N_(2)O emissions directly in AM,by lowering soil pH in AS,and by lowering abundance of denitrification genes in CG.N and P co-addition increased N_(2)O emissions in AM and AS but only showed an interactive effect in AM.P addition enhanced the increase in N_(2)O emissions caused by N addition mainly by promoting plant growth in AM.Overall,our results illustrate that short-term P addition cannot alleviate the stimulation of N_(2)O emissions by N deposition in alpine grassland ecosystems,and may even further stimulate N_(2)O emissions. 展开更多
关键词 tibetan alpine grassland N_(2)O emissions nitrogen phosphorus N-cycling functional gene
在线阅读 下载PDF
Evaluation of surface latent heat and sensible heat fluxes from ERA-5,GLDAS,and MODIS on different underlying surfaces in the Tibetan Plateau
6
作者 LAN Xincan YIN Yongsheng +4 位作者 TANG Jiale LIAN Yuanyuan ZHAO Fang WANG Yumeng ZHENG Zhixian 《Journal of Mountain Science》 2025年第1期230-245,共16页
Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess ... Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS. 展开更多
关键词 FLUXNET ERA-5 GLDAS MODIS Latent and sensible heat flux(LE and SH) tibetan Plateau
在线阅读 下载PDF
Extraction of gravel characteristics and spatial inversion for ecological restoration monitoring in the Northern Tibetan Plateau
7
作者 KONG Bo YU Huan +3 位作者 QIU Xia HU Wenkai HE Bing GUAN Xudong 《Journal of Mountain Science》 2025年第2期556-574,共19页
Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial rol... Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial role played by gravel in the ecological restoration of these grasslands.This study utilizes supervised classification and segmentation techniques based on machine learning to extract gravel morphology profiles from field-sampled plot images and calculate their characteristic parameters.Employing a multivariate linear approach combined with Principal Component Analysis(PCA),a model for inferring gravel characteristic parameters is constructed.Statistical features,particle size characteristics,and spatial distribution patterns of gravel are analyzed.Results reveal that gravel predominantly exhibit sub-rounded shapes,with 80%classified as fine gravel.The coefficients of determination(R2)between gravel particle size and coverage,perimeter,and area are 0.444,0.724,and 0.557,respectively,indicating linear relationships.The cumulative contribution rate of the top five remote sensing factors is 95.44%,with the first geological factor contributing 77.64%,collectively reflecting the primary information of the 20 factors used.Modeling shows that areas with larger gravel particle sizes correspond to increased perimeter and coverage.Gravels in the Nagqu Prefecture of northern Tibet have a particle size range of 4-8 mm,primarily comprising fine gravel which accounts for 94.61%.These findings provide a scientific basis for extracting gravel characteristic parameters and understanding their spatial distribution variations in the northern Tibetan Plateau. 展开更多
关键词 Gravel characteristics parameters Northern tibetan Plateau Gravel outline extraction Remote sensing inversion Grassland degradation
在线阅读 下载PDF
Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau
8
作者 Yuanchang DONG Guoping LI +3 位作者 Xiaolin XIE Long YANG Peiwen ZHANG Bo ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期155-172,共18页
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How... Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP. 展开更多
关键词 eastern slope of the tibetan Plateau diabatic heating tibetan Plateau vortex precipitation distribution TRACK
在线阅读 下载PDF
Multiple Uplift and Exhumation of the Southeastern Tibetan Plateau:Evidence from Low-Temperature Thermochronology 被引量:3
9
作者 WU Limin PENG Touping +6 位作者 FAN Weiming ZHAO Guochun GAO Jianfeng DONG Xiaohan PENG Shili MIN Kang Tin Aung MYINT 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期569-584,共16页
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat... Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate. 展开更多
关键词 apatite fission track rapid cooling differential uplift MAGMATISM southeastern tibetan Plateau
在线阅读 下载PDF
Convection-Permitting Simulations of Current and Future Climates over the Tibetan Plateau 被引量:1
10
作者 Liwei ZOU Tianjun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1901-1916,共16页
The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models o... The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models of coarse resolution in which deep convection must be parameterized.In this study,we present results from a first set of highresolution climate change simulations that permit convection at approximately 3.3-km grid spacing,with a focus on the TP,using the Icosahedral Nonhydrostatic Weather and Climate Model(ICON).Two 12-year simulations were performed,consisting of a retrospective simulation(2008–20)with initial and boundary conditions from ERA5 reanalysis and a pseudoglobal warming projection driven by modified reanalysis-derived initial and boundary conditions by adding the monthly CMIP6 ensemble-mean climate change under the SSP5-8.5 scenario.The retrospective simulation shows overall good performance in capturing the seasonal precipitation and surface air temperature.Over the central and eastern TP,the average biases in precipitation(temperature)are less than−0.34 mm d−1(−1.1℃)throughout the year.The simulated biases over the TP are height-dependent.Cold(wet)biases are found in summer(winter)above 5500 m.The future climate simulation suggests that the TP will be wetter and warmer under the SSP5-8.5 scenario.The general features of projected changes in ICON are comparable to the CMIP6 ensemble projection,but the added value from kilometer-scale modeling is evident in both precipitation and temperature projections over complex topographic regions.These ICON-downscaled climate change simulations provide a high-resolution dataset to the community for the study of regional climate changes and impacts over the TP. 展开更多
关键词 dynamical downscaling convection-permitting tibetan Plateau pseudo-global warming
在线阅读 下载PDF
Advances in ice avalanches on the Tibetan Plateau 被引量:1
11
作者 TANG Minggao LI Guang +4 位作者 ZHAO Huanle XU Qiang WU Guangjian YANG Wei GUO Daojing 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1814-1829,共16页
As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge ... As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge on IAs remains lacking.We summarized 63 IAs on the Tibetan Plateau(TP)since the 20th century,of which,over 20 IAs occurred after the 21st century.The distributions of IAs are mainly concentrated in the southeastern and northwestern TP,and the occurrence time of IAs is mostly concentrated from July to September.We highlight recent advances in mechanical properties and genetic mechanisms of IAs and emphasize that temperature,rainfall,and seismicity are the inducing factors.The failure modes of IAs are summarized into 6 categories by examples:slip pulling type,slip toppling type,slip breaking type,water level collapse type,cave roof collapse type,and wedge failure type.Finally,we deliver recommendations concerning the risk assessment and prediction of IAs.The results provide important scientific value for addressing climate change and resisting glacier-related hazards. 展开更多
关键词 Ice avalanche Global warming Genetic mechanism Risk assessment tibetan Plateau
在线阅读 下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
12
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 tibetan Plateau atmospheric heat source Northeast China summer precipitation soil moisture
在线阅读 下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
13
作者 Jinglong Huang Chaofan Li +2 位作者 Binghao Jia Chujie Gao Ruichao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness PERMAFROST tibetan plateau Climatological characteristics
在线阅读 下载PDF
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations 被引量:1
14
作者 Yuanhai Fu Xuejie Gao 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期3-9,共7页
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr... Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas. 展开更多
关键词 Extreme snowfall Regional climate model tibetan plateau Climate change
在线阅读 下载PDF
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 被引量:1
15
作者 Ying Na Chaofan Li Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期16-21,共6页
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m... The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region. 展开更多
关键词 Isolated deep convection tibetan plateau Climatological characteristics Precipitation contribution Extreme precipitation
在线阅读 下载PDF
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
16
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 tibetan plateau Climate sensitivity Precipitation projection Water availability projection
在线阅读 下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau 被引量:1
17
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value tibetan Plateau climate change
在线阅读 下载PDF
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau 被引量:1
18
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the tibetan Plateau
在线阅读 下载PDF
Changes in Spring Snow Cover over the Eastern and Western Tibetan Plateau and Their Associated Mechanism
19
作者 Fangchi LIU Xiaojing JIA Wei DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期959-973,共15页
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate... The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP. 展开更多
关键词 snow cover tibetan Plateau long-term changes SPRING
在线阅读 下载PDF
Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal
20
作者 Xiaoli ZHOU Wen ZHOU +3 位作者 Dongxiao WANG Qiang XIE Lei YANG Qihua PENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期881-893,共13页
This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over th... This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over the southern boundary of the Tibetan Plateau(SBTP).May and October–December are the bimodal phases of BOB TC frequency,which decreases month by month from October to December and is relatively low in May.However,the contribution rate to the MMBA is the highest in May.The seasonal variation in the meridional position of the westerlies is the key factor affecting the contribution rate.The relatively southern(northern)position of the westerlies in November and December(May)results in a lower(higher)contribution rate to the MMBA.This mechanism is confirmed by the momentum equation.When water vapor enters the westerlies near the trough line,the resultant meridional acceleration is directed north.It follows that the farther north the trough is,and the farther north the water vapor can be transported.When water vapor enters the westerlies from the area near the ridge line,for Type-T(Type-R)TCs,water vapor enters the westerlies downstream of the trough(ridge).Consequently,the direction of the resultant meridional acceleration is directed south and the resultant zonal acceleration is directed east(west),which is not conducive to the northward transport of water vapor.This is especially the case if the trough or ridge is relatively south,as the water vapor may not cross the SBTP. 展开更多
关键词 tropical cyclone tibetan Plateau Bay of Bengal moisture budget weste
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部