Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat...Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.展开更多
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters i...In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.展开更多
In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside hig...In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux(HHF) components in the system are key issues.In this paper,taking the HHF ion dump with swirl tubes in NBI system as an example,an accurate thermal dynamic simulation method based on computational fluid dynamics(CFD) and the finite volume method is presented to predict performance of the HHF component.In this simulation method,the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling.The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube.The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components,and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way.The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system.展开更多
Fouling of heat transfer surfaces during subcooled flow boiling is a frequent engineering problem in process industries. It has been generally observed that the deposits in such industrial systems consist mainly of ca...Fouling of heat transfer surfaces during subcooled flow boiling is a frequent engineering problem in process industries. It has been generally observed that the deposits in such industrial systems consist mainly of calcium carbonate (CaCO3), which has inverse solubility characteristics. This investigation focused on the mechanism to control deposition and the morphology of crystalline deposits. A series of experiments were carried out at different surface and bulk temperatures, fluid velocities and salt ion concentrations. It is shown that the deposition rate is controlled by different mechanism in the range of experimental parameters, depending on salt ion concentration. At higher ion concentration, the fouling rate increases linearly with surface temperature and the effect of flow velocity on deposition rate is quite strong, suggesting that mass diffusion controls the fouling process. On the contrary, at lower ion concentration, the fouling rate increases exponentially with surface temperature and is independent of the velocity, illustrating that surface reaction controls the fouling process. By analysis of the morphology of scale, two types of crystal (calcite and aragonite) are formed. The lower the temperature and ion concentration, the longer the induction period and the higher the percentage of calcite nreciDitated.展开更多
Experiments on subcooled flow boiling have been conducted using water in a rectangular flow channel.Similar to the coolant channel in internal combustion engines(IC engines),the flow channel in this experiment was asy...Experiments on subcooled flow boiling have been conducted using water in a rectangular flow channel.Similar to the coolant channel in internal combustion engines(IC engines),the flow channel in this experiment was asymmetrically heated.Bubble images were captured using a high speed camera from the side view of the channel.The experimental conditions in terms of bulk temperature,bulk velocity,pressure and heat flux ranged from 65°C–75°C,0.25 m/s–0.75 m/s,1–1.7 bar and 490 kW/m2–700 kW/m2,respectively.On the basis of these tests,a statistical analysis of the bubble size has been conducted considering a population of 1400 samples.It has been found that the mean Sauter bubble diameter increases with the decrease of subcooling,bulk velocity,pressure and increased heat flux.A modified correlation has been finally proposed to predict the mean Sauter bubble diameter under subcooled flow boiling conditions upstream of the onset of significant void,which shows good accuracy with the experimental results.展开更多
A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanopartic...A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.展开更多
The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new...The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.展开更多
The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow ann...The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.展开更多
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ...The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.展开更多
The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet sub...The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet subcooling from 4.7 to 15.0℃, heat flux from 0.11 to 8.9 kW/m2 and mass flux from 218. 2 to 443. 7 kg/( m2 · s ). The heat flux, superheat and temperature undershoot at the ONB are analyzed in vertical helically-coiled tubes. Also, the effects of mass flux, system pressure, inlet subcooling and geometric parameters on the ONB are studied. The results demonstrate that the inception heat flux and superheat increase with increasing mass flux and inlet subcooling, but decrease with increasing system pressure and helix diameter. The pitch of the helical coil has a slight effect on the wall superheat and heat flux at the ONB. The correlation of heat flux at the ONB of subcooled flow boiling in helical coil is developed based on the experimental data, and it shows a good agreement with the experimental data.展开更多
The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid...The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.展开更多
Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical hea...Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.展开更多
The subcooled water flow boiling is beneficial for removing the high heat flux from the divertor in the fusion reactor,for which an accurate critical heat flux(CHF)correlation is necessary.Up to now,there are many CHF...The subcooled water flow boiling is beneficial for removing the high heat flux from the divertor in the fusion reactor,for which an accurate critical heat flux(CHF)correlation is necessary.Up to now,there are many CHF correlations mentioned for subcooled water flow boiling in the open literatures.However,the CHF correlations’accuracies for the prediction of subcooled water flow boiling are not satisfactory at high heat flux and high pressure for reactor divertor.The present paper compiled 1356 CHF experimental data points from 15 independent open literatures and evaluated 10 existing CHF correlations in subcooled water flow boiling.From the evaluation,the W-2 CHF correlation performs best for the experimental CHF data in all existing critical heat flux correlations.However,the predicted mean absolute error(MAE)of the W-2 correlation is not very ideal for all database and the MAE of the W-2 correlation is from 30%to 50%for some database.In order to enhance the CHF prediction accuracy in subcooled water flow boiling at high heat flux and high pressure,the present paper developed a new CHF correlation.Compared with other existing CHF correlations,the new CHF correlation greatly enhances the prediction accuracy over a broad range of pressures and heat fluxes which are desired in the cooling of high heat flux devices,such as those in the fusion reactor divertor.The validation results show that the new correlation has a MAE of 10.05%and a root mean squared error(RMSE)of 16.61%,predicting 68.1%of the entire database within±10%and 81.5%within±15%.The MAE of the new CHF correlation is 7.4%less than that of the best existing one(W-2 correlation),further confirming its superior prediction accuracy and reliability.Besides,the new CHF correlation works well not only for a uniform power profile but also for a non-uniform power profile in subcooled water flow boiling at high pressure and high heat flux.展开更多
The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF unde...The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling.The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80℃), channel orientation (vertical and horizontal). A Inaximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: Tin = 30°, p= 2.5 MPa, u = 40 m/s, D = 2.5 mm (smooth channel)Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.展开更多
Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristic...Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristics of the Xi'an pulsed reactor(XAPR),fuel conduction,single-phase convection and boiling heat transfer,and void fraction models of the core are constructed.To validate the correctness of the physical models presented in the paper,numerical calculation based on a subchannel analysis method of XAPR is carried out,and the temperature fields are measured in some reactor coolant channels.The comparison between the calculated and experimental results verifies the effectiveness of the models.These physical models are used to calculate the thermal-hydraulic parameters of XAPR at the rated power(for XAPR the rated power is 2.0 MW in steady-state operation).The results indicate that subcooled boiling occurs in the XAPR core but it exhibits a subcooling degree which is considerably higher than that of saturation boiling.Subcooled boiling improves the efficiency of heat transfer between the fuel element surface and coolant,as well as effectively protects fuel elements.This research is also a beneficial reference in thermal-hydraulic analysis for other natural circulation reactors.展开更多
In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was es...In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was established.With this platform,the multiphase flow and heat transfer phenomena on the surface of triangular fin when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence(PLIF) and high-speed photography techniques.The temperature contour on the slice plane of fin symmetry was measured and the heat flux contour was processed based on gradient computation.It is confirmed that:1) PLIF with high-speed photography is very powerful technique to investigate the multiphase flow of hypervapotron quantitatively;2) evaporation is the primary way in heat transfer mechanism of hypervapotron flow under the condition of high heat flux.The techniques and results obtained will provide useful reference in the R&D of hypervapotron technology in China.展开更多
基金Supported by the National Natural Science Foundation of China (51106119, 81100707), the Fundamental Research Funds for the Central University of China, Doctoral Fund of Ministry of Education (20110201120052) and the National Science and Technology Sur0orting Item (2012BAA08B03).
文摘Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)Funding of Jiangsu Innovation Program for Graduate Education(CXLX12.0170)the Fundamental Research Funds for the Central Universities of China
文摘In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.
基金supported by the Special Program of ITER(International Thermonuclear Experimental Reactor)in China(No.2013GB101002)
文摘In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux(HHF) components in the system are key issues.In this paper,taking the HHF ion dump with swirl tubes in NBI system as an example,an accurate thermal dynamic simulation method based on computational fluid dynamics(CFD) and the finite volume method is presented to predict performance of the HHF component.In this simulation method,the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling.The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube.The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components,and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way.The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system.
基金Supported by the Special Funds for Major State Basic Research Projects of China (G2000026304)
文摘Fouling of heat transfer surfaces during subcooled flow boiling is a frequent engineering problem in process industries. It has been generally observed that the deposits in such industrial systems consist mainly of calcium carbonate (CaCO3), which has inverse solubility characteristics. This investigation focused on the mechanism to control deposition and the morphology of crystalline deposits. A series of experiments were carried out at different surface and bulk temperatures, fluid velocities and salt ion concentrations. It is shown that the deposition rate is controlled by different mechanism in the range of experimental parameters, depending on salt ion concentration. At higher ion concentration, the fouling rate increases linearly with surface temperature and the effect of flow velocity on deposition rate is quite strong, suggesting that mass diffusion controls the fouling process. On the contrary, at lower ion concentration, the fouling rate increases exponentially with surface temperature and is independent of the velocity, illustrating that surface reaction controls the fouling process. By analysis of the morphology of scale, two types of crystal (calcite and aragonite) are formed. The lower the temperature and ion concentration, the longer the induction period and the higher the percentage of calcite nreciDitated.
基金the National Natural Science Foundation of China(Grant No.51576116)the National Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE041)。
文摘Experiments on subcooled flow boiling have been conducted using water in a rectangular flow channel.Similar to the coolant channel in internal combustion engines(IC engines),the flow channel in this experiment was asymmetrically heated.Bubble images were captured using a high speed camera from the side view of the channel.The experimental conditions in terms of bulk temperature,bulk velocity,pressure and heat flux ranged from 65°C–75°C,0.25 m/s–0.75 m/s,1–1.7 bar and 490 kW/m2–700 kW/m2,respectively.On the basis of these tests,a statistical analysis of the bubble size has been conducted considering a population of 1400 samples.It has been found that the mean Sauter bubble diameter increases with the decrease of subcooling,bulk velocity,pressure and increased heat flux.A modified correlation has been finally proposed to predict the mean Sauter bubble diameter under subcooled flow boiling conditions upstream of the onset of significant void,which shows good accuracy with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No.11102100)the Natural Science Foundation of Fujian Province,China (Grant No.2012J01017)the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province,China (Grant No.JK2011056)
文摘A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.
基金This work was supported by the National Key Research and Development Project of China(Grant No.2017YFB0103504)National Natural Science Foundation of China(Grant No.51576116).
文摘The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.
基金This work is supported by the Project of National Natural Science Foundation of China (No. 50076014) and the Project of Major State Basic Research Program (No. G2000026303).
文摘The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.
基金Project(51171041) supported by the National Natural Science Foundation of China
文摘The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.
基金The National Natural Science Foundation of China(No.50776055,51076084)the Natural Science Foundation of Shandong Province(No.ZR2016YL005)
文摘The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet subcooling from 4.7 to 15.0℃, heat flux from 0.11 to 8.9 kW/m2 and mass flux from 218. 2 to 443. 7 kg/( m2 · s ). The heat flux, superheat and temperature undershoot at the ONB are analyzed in vertical helically-coiled tubes. Also, the effects of mass flux, system pressure, inlet subcooling and geometric parameters on the ONB are studied. The results demonstrate that the inception heat flux and superheat increase with increasing mass flux and inlet subcooling, but decrease with increasing system pressure and helix diameter. The pitch of the helical coil has a slight effect on the wall superheat and heat flux at the ONB. The correlation of heat flux at the ONB of subcooled flow boiling in helical coil is developed based on the experimental data, and it shows a good agreement with the experimental data.
基金supported by National Natural Science Foundation of China (No. 51176008)
文摘The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.
文摘Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.
基金supported by National Natural Science Foundation of China(Grant No.11805005)National Natural Science Foundation of China(Grant No.11705234)+4 种基金Visiting and Research Project at Home and Abroad for Outstanding Youth Talents of Anhui Province University(Grant No.gxgwfx2018024)National Magnetic Confinement Fusion Science Program of China(Grant No.2014GB101001)Key University Science Research Project of Anhui Province(Grant No.KJ2018A0080)Key project of excellent young talent support program of Anhui Province of China(Grant No.gxyq ZD2016087)Provincial Natural Science Foundation of Anhui(Grant No.1608085ME89)。
文摘The subcooled water flow boiling is beneficial for removing the high heat flux from the divertor in the fusion reactor,for which an accurate critical heat flux(CHF)correlation is necessary.Up to now,there are many CHF correlations mentioned for subcooled water flow boiling in the open literatures.However,the CHF correlations’accuracies for the prediction of subcooled water flow boiling are not satisfactory at high heat flux and high pressure for reactor divertor.The present paper compiled 1356 CHF experimental data points from 15 independent open literatures and evaluated 10 existing CHF correlations in subcooled water flow boiling.From the evaluation,the W-2 CHF correlation performs best for the experimental CHF data in all existing critical heat flux correlations.However,the predicted mean absolute error(MAE)of the W-2 correlation is not very ideal for all database and the MAE of the W-2 correlation is from 30%to 50%for some database.In order to enhance the CHF prediction accuracy in subcooled water flow boiling at high heat flux and high pressure,the present paper developed a new CHF correlation.Compared with other existing CHF correlations,the new CHF correlation greatly enhances the prediction accuracy over a broad range of pressures and heat fluxes which are desired in the cooling of high heat flux devices,such as those in the fusion reactor divertor.The validation results show that the new correlation has a MAE of 10.05%and a root mean squared error(RMSE)of 16.61%,predicting 68.1%of the entire database within±10%and 81.5%within±15%.The MAE of the new CHF correlation is 7.4%less than that of the best existing one(W-2 correlation),further confirming its superior prediction accuracy and reliability.Besides,the new CHF correlation works well not only for a uniform power profile but also for a non-uniform power profile in subcooled water flow boiling at high pressure and high heat flux.
文摘The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling.The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80℃), channel orientation (vertical and horizontal). A Inaximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: Tin = 30°, p= 2.5 MPa, u = 40 m/s, D = 2.5 mm (smooth channel)Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.
文摘Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristics of the Xi'an pulsed reactor(XAPR),fuel conduction,single-phase convection and boiling heat transfer,and void fraction models of the core are constructed.To validate the correctness of the physical models presented in the paper,numerical calculation based on a subchannel analysis method of XAPR is carried out,and the temperature fields are measured in some reactor coolant channels.The comparison between the calculated and experimental results verifies the effectiveness of the models.These physical models are used to calculate the thermal-hydraulic parameters of XAPR at the rated power(for XAPR the rated power is 2.0 MW in steady-state operation).The results indicate that subcooled boiling occurs in the XAPR core but it exhibits a subcooling degree which is considerably higher than that of saturation boiling.Subcooled boiling improves the efficiency of heat transfer between the fuel element surface and coolant,as well as effectively protects fuel elements.This research is also a beneficial reference in thermal-hydraulic analysis for other natural circulation reactors.
基金supported by the Fundamental Research Funds for the Central Universities of Chinathe National Magnetic Confined Fusion Energy Program of China (Grant No. 2009GB104005)
文摘In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was established.With this platform,the multiphase flow and heat transfer phenomena on the surface of triangular fin when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence(PLIF) and high-speed photography techniques.The temperature contour on the slice plane of fin symmetry was measured and the heat flux contour was processed based on gradient computation.It is confirmed that:1) PLIF with high-speed photography is very powerful technique to investigate the multiphase flow of hypervapotron quantitatively;2) evaporation is the primary way in heat transfer mechanism of hypervapotron flow under the condition of high heat flux.The techniques and results obtained will provide useful reference in the R&D of hypervapotron technology in China.