期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
SELF-DEPENDENT LOCALITY PRESERVING PROJECTION WITH TRANSFORMED SPACE-ORIENTED NEIGHBORHOOD GRAPH
1
作者 乔立山 张丽梅 孙忠贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期261-268,共8页
Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in da... Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results. 展开更多
关键词 graphic methods Laplacian transforms unsupervised learning dimensionality reduction locality preserving projection
在线阅读 下载PDF
Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection 被引量:30
2
作者 DENG Xiaogang TIAN Xuemin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期163-170,共8页
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de... Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance. 展开更多
关键词 nonlinear locality preserving projection kernel trick sparse model fault detection
在线阅读 下载PDF
Fault Diagnosis Model Based on Feature Compression with Orthogonal Locality Preserving Projection 被引量:14
3
作者 TANG Baoping LI Feng QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期891-898,共8页
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi... Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis. 展开更多
关键词 orthogonal locality preserving projection(OLPP) manifold learning feature compression Morlet wavelet support vector machine(MWSVM) empirical mode decomposition(EMD) fault diagnosis
在线阅读 下载PDF
Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace 被引量:5
4
作者 解翔 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1174-1179,共6页
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st... For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process. 展开更多
关键词 multimode process monitoring fuzzy C-means locality preserving projection integrated monitoring index Tennessee Eastman process
在线阅读 下载PDF
Locality Preserving Discriminant Projection for Speaker Verification 被引量:1
5
作者 Chunyan Liang Wei Cao Shuxin Cao 《Journal of Computer and Communications》 2020年第11期14-22,共9页
In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal... In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance. 展开更多
关键词 Speaker Verification locality preserving Discriminant projection locality preserving projection Manifold Learning Total Variability Factor Analysis
在线阅读 下载PDF
Face recognition using illuminant locality preserving projections
6
作者 刘朋樟 沈庭芝 林健文 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期111-116,共6页
A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), e... A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations. 展开更多
关键词 locality preserving projections LPP illuminant direction illuminant locality preser ving projections (ILPP) face recognition
在线阅读 下载PDF
A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression
7
作者 Azza Kamal Ahmed Abdelmajed 《Journal of Data Analysis and Information Processing》 2016年第2期55-63,共9页
There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it de... There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach. 展开更多
关键词 Logistic Regression (LR) Principal Component Analysis (PCA) locality preserving projection (LPP)
在线阅读 下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
8
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections locality preserving projections Database monitoring
在线阅读 下载PDF
Surface Detection of Continuous Casting Slabs Based on Curvelet Transform and Kernel Locality Preserving Projections 被引量:19
9
作者 AI Yong-hao XU Ke 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第5期80-86,共7页
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog... Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%. 展开更多
关键词 surface detection continuous casting slab Curvelet transform feature extraction kernel locality preserving projections
原文传递
Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection 被引量:3
10
作者 Xin Peng Yang Tang +1 位作者 Wenli Du Feng Qian 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第3期429-439,共11页
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes... In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis. 展开更多
关键词 non-Gaussian processes subspace projection independent component analysis locality preserving projection finite mixture model
原文传递
Full-viewpoint 3D Space Object Recognition Based on Kernel Locality Preserving Projections 被引量:2
11
作者 孟钢 姜志国 +2 位作者 刘正一 张浩鹏 赵丹培 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期563-572,共10页
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-... Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%. 展开更多
关键词 SATELLITES object recognition THREE-DIMENSIONAL image dataset full-viewpoint kernel locality preserving projections
原文传递
Energy Efficient Access Point Selection and Signal Projection for Accurate Indoor Positioning 被引量:5
12
作者 Deng Zhian Xu Yubin Ma Lin 《China Communications》 SCIE CSCD 2012年第2期52-65,共14页
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP... We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%. 展开更多
关键词 indoor positioning energy efficientcomputing WLAN maximum mutual information orthogonal locality preserving projection
在线阅读 下载PDF
基于收缩自编码器和局部保持投影的机械故障特征提取
13
作者 郝宇星 刘庆强 《现代制造工程》 北大核心 2025年第2期84-93,137,共11页
局部保持投影算法的性能主要依赖于构造的最近邻图,而构造最近邻图时容易受到原始数据冗余信息的干扰,以及没有良好的依据选择合适的热核参数带来的影响,导致不能充分挖掘高维数据的局部结构信息,在低维嵌入过程中也易对噪声和异常值较... 局部保持投影算法的性能主要依赖于构造的最近邻图,而构造最近邻图时容易受到原始数据冗余信息的干扰,以及没有良好的依据选择合适的热核参数带来的影响,导致不能充分挖掘高维数据的局部结构信息,在低维嵌入过程中也易对噪声和异常值较为敏感,影响其在故障诊断应用中的特征提取能力。针对以上问题,提出基于收缩自编码器和流形排序的局部保持投影算法(Locality Preserving Projections algorithm based on Contractive Auto-Encoder and Manifold Ranking,CAE-MRLPP),并用于机械设备故障诊断。首先,将样本标签信息和斯皮尔曼相关系数结合,预调整样本间距;其次,引入流形排序思想,根据样本点与邻域点在彼此邻域集中的排序位置信息以及二者的互邻个数信息来构造权重;最后,将收缩自编码器与基于流形排序的局部保持投影相融合,通过梯度下降法迭代优化求解出最优的投影矩阵,进而得到故障数据的低维表示。分别在滚动轴承数据集和抽油机数据集上进行了多项验证,故障识别准确度均在98%以上,表明该算法具有良好的特征提取能力,能够有效提高故障识别准确度,同时具有较好的鲁棒性和泛化能力。 展开更多
关键词 局部保持投影 特征提取 故障诊断 收缩自编码器 抽油机 滚动轴承
在线阅读 下载PDF
基于偶极子成像和3D卷积神经网络的源域运动想象解码方法
14
作者 李明爱 李翔宇 《北京生物医学工程》 2024年第5期441-450,共10页
目的为充分保留和利用运动想象(motor imagery,MI)时偶极子的时空信息,本文提出一种新的偶极子成像(dipoles imaging,DI)结合3维卷积神经网络(3D convolutional neural network,3DCNN)的源域MI解码方法(DI-3DCNN)。方法首先,基于脑源成... 目的为充分保留和利用运动想象(motor imagery,MI)时偶极子的时空信息,本文提出一种新的偶极子成像(dipoles imaging,DI)结合3维卷积神经网络(3D convolutional neural network,3DCNN)的源域MI解码方法(DI-3DCNN)。方法首先,基于脑源成像(electroencephalography source imaging,ESI)技术计算运动想象脑电信号的偶极子源估计;接着,获取每类MI任务的平均偶极子源估计,基于数据驱动自动选择每类任务中偶极子激活水平较高且最大区分于其他任务的时刻作为中心采样点,再对中心采样点进行前后延伸并按任务顺序组合,形成感兴趣时间(time of interest,TOI);其次,选择覆盖高激活偶极子的Desikan-Killiany(DK)神经分区,并对局部保持投影方法(local preserving projection,LPP)增加DK分区约束,获得一种改进的有监督LPP(LPP DK);进而,基于LPP DK分别将所选择左、右半脑分区内的偶极子坐标从3维(three dimensional,3D)降成2维,获得具有神经生理先验信息的偶极子2D坐标,再结合TOI内各采样点处偶极子的幅值信息进行成像,并进行插值、下采样操作,得到偶极子的2D幅值图;随后,将TOI内偶极子的2D幅值图按时间顺序堆叠,获得左、右半脑的3D偶极子特征图,并将其作为网络的输入数据;最后,根据输入数据的特点,设计一种双分支3D卷积神经网络(dual-branched 3DCNN,DB3DCNN)实现MI解码。结果基于BCI competition IV 2a数据集进行实验研究,取得了86.50%的平均解码准确率。结论基于DI所得3D偶极子特征图能够较好地保留偶极子的最佳激活时间、程度及生理空间信息,且与DB3DCNN性能匹配。 展开更多
关键词 运动想象 脑源成像 局部保持投影 卷积神经网络 Desikan-Killiany分区
在线阅读 下载PDF
最近邻子空间保持的特征提取方法 被引量:1
15
作者 徐剑豪 胡文军 +1 位作者 王哲昀 胡天杰 《计算机应用与软件》 北大核心 2024年第2期293-299,共7页
针对流形学习方法定义的局部存在置信度不足的问题,通过保持局部的内部关系和空间关系来捕捉数据的低维流形,提出一种最近邻子空间保持的特征提取方法。将数据中的每个样本点及其K个近邻视为一个局部,进而张成一个最近邻子空间;利用格... 针对流形学习方法定义的局部存在置信度不足的问题,通过保持局部的内部关系和空间关系来捕捉数据的低维流形,提出一种最近邻子空间保持的特征提取方法。将数据中的每个样本点及其K个近邻视为一个局部,进而张成一个最近邻子空间;利用格拉姆行列式对所有最近邻子空间的体积进行度量;对体积做归一化处理,并集成到局部保持投影算法的模型中。在真实数据上的聚类和分类实验结果表明该方法提取的特征更具鉴别能力。 展开更多
关键词 流形学习 特征提取 最近邻子空间 局部保持投影
在线阅读 下载PDF
基于自变量简约的大规模稀疏多目标优化 被引量:1
16
作者 丘雪瑶 辜方清 《计算机应用研究》 CSCD 北大核心 2024年第6期1663-1668,共6页
现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法... 现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法求解大规模稀疏多目标优化问题。该算法通过引入局部保持投影降维,保留原始自变量空间中的局部近邻关系,并设计一个归档集,将寻找到的非劣解存入其中进行训练,以提高投影的准确性。将该算法与四种流行的多目标进化算法在一系列测试问题和实际应用问题上进行了比较。实验结果表明,所提算法在解决稀疏多目标问题上具有较好的效果。因此,通过自变量简约能降低问题的求解难度,提高算法的搜索效率,在解决大规模稀疏多目标问题方面具有显著的优势。 展开更多
关键词 局部保持投影 进化算法 大规模稀疏多目标优化问题
在线阅读 下载PDF
深度置信网络融合局部保持投影的入侵检测模型
17
作者 武玉坤 李伟 陈沅涛 《计算机应用与软件》 北大核心 2024年第6期62-71,共10页
网络入侵检测系统(NIDS)提供了比其他传统网络防御技术(如防火墙系统)更好的网络安全解决方案。提出一种深度置信网络(DBN)与局部保持投影技术相融合的入侵检测模型。深度置信网络用于原始数据的特征学习;采用局部保持投影(LPP)融合深... 网络入侵检测系统(NIDS)提供了比其他传统网络防御技术(如防火墙系统)更好的网络安全解决方案。提出一种深度置信网络(DBN)与局部保持投影技术相融合的入侵检测模型。深度置信网络用于原始数据的特征学习;采用局部保持投影(LPP)融合深层特征,进一步去除冗余和无关特征。最后使用Softmax分类器进行分类。研究该方法在NSL-KDD数据集和UNSW-NB15数据集上的准确率、检测率、误报率等分类指标,并与常规的机器学习分类方法及其他文献中最新的方法进行比较。实验结果表明DBN-LPP模型提高了入侵检测的综合性能,其性能优于传统的机器学习分类方法及其他方法,为入侵检测提供了一种新的研究方法。 展开更多
关键词 入侵检测 深度学习 深度置信网络 局部保持投影
在线阅读 下载PDF
基于最优近邻的局部保持投影方法
18
作者 赵俊涛 李陶深 卢志翔 《计算机工程》 CAS CSCD 北大核心 2024年第9期161-168,共8页
局部保持投影(LPP)方法是机器学习领域中一种经典的降维方法。然而LPP方法以及部分改进方法在构建数据的局部结构时简单地使用k最近邻(k-NN)分类算法寻找样本的近邻点,容易受到参数k、噪声和异常值的影响。为了解决上述问题,提出一种基... 局部保持投影(LPP)方法是机器学习领域中一种经典的降维方法。然而LPP方法以及部分改进方法在构建数据的局部结构时简单地使用k最近邻(k-NN)分类算法寻找样本的近邻点,容易受到参数k、噪声和异常值的影响。为了解决上述问题,提出一种基于最优近邻的LPP方法。该方法使用寻找最优近邻算法,在找到样本近邻点后,进一步选择与样本有一定数量的共同近邻点的近邻样本作为最优近邻,通过共同近邻点的限定来选择与样本最相似的近邻,增强近邻样本间的相关性,避免了传统LPP方法受参数k影响大等问题。在选择出足够的样本最优近邻后,构建数据局部结构,以便准确地反映数据的本质结构特征,使降维后的数据能最大程度保留样本的有效信息,提升后续机器学习模型的性能。公共图像数据集上的对比实验结果表明,该方法具有较好的数据降维效果,有效地提高了图像识别准确率。 展开更多
关键词 局部保持投影方法 最优近邻 近邻样本 降维 特征提取
在线阅读 下载PDF
基于局部保留投影的稀疏中智聚类算法
19
作者 张丹 马盈仓 +1 位作者 杨小飞 邢志伟 《计算机与数字工程》 2024年第2期307-314,320,共9页
聚类算法是机器学习领域重要的研究课题之一,传统的中智聚类算法(例如FC-PFS算法)未考虑局部空间结构,且距离的计算受到冗余特征影响,不能有效处理高维数据集。为此,提出一种新的基于局部保留投影的稀疏中智聚类算法(LPSNCM)及其优化方... 聚类算法是机器学习领域重要的研究课题之一,传统的中智聚类算法(例如FC-PFS算法)未考虑局部空间结构,且距离的计算受到冗余特征影响,不能有效处理高维数据集。为此,提出一种新的基于局部保留投影的稀疏中智聚类算法(LPSNCM)及其优化方法。一方面LPSNCM算法通过局部保留投影方法生成具有局部结构信息的正交投影空间,另一方面通过特征提取方法可以减少特征数量以获得更有效的特征,从而增强了FC-PFS算法处理高维数据的能力。LPSNCM算法也可以被看作是谱聚类两个独立阶段的统一模型。在一些基准数据集上的实验结果表明,与FC-PFS和某些最新方法相比,证明了LPSNCM的有效性。 展开更多
关键词 中智集 局部信息保留 基于投影的空间转化
在线阅读 下载PDF
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
20
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 正交局部保持映射 成本优化 高斯过程分类器
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部