Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in da...Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results.展开更多
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de...Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.展开更多
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi...Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.展开更多
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), e...A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.展开更多
There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it de...There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog...Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.展开更多
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes...In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis.展开更多
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-...Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
局部保持投影算法的性能主要依赖于构造的最近邻图,而构造最近邻图时容易受到原始数据冗余信息的干扰,以及没有良好的依据选择合适的热核参数带来的影响,导致不能充分挖掘高维数据的局部结构信息,在低维嵌入过程中也易对噪声和异常值较...局部保持投影算法的性能主要依赖于构造的最近邻图,而构造最近邻图时容易受到原始数据冗余信息的干扰,以及没有良好的依据选择合适的热核参数带来的影响,导致不能充分挖掘高维数据的局部结构信息,在低维嵌入过程中也易对噪声和异常值较为敏感,影响其在故障诊断应用中的特征提取能力。针对以上问题,提出基于收缩自编码器和流形排序的局部保持投影算法(Locality Preserving Projections algorithm based on Contractive Auto-Encoder and Manifold Ranking,CAE-MRLPP),并用于机械设备故障诊断。首先,将样本标签信息和斯皮尔曼相关系数结合,预调整样本间距;其次,引入流形排序思想,根据样本点与邻域点在彼此邻域集中的排序位置信息以及二者的互邻个数信息来构造权重;最后,将收缩自编码器与基于流形排序的局部保持投影相融合,通过梯度下降法迭代优化求解出最优的投影矩阵,进而得到故障数据的低维表示。分别在滚动轴承数据集和抽油机数据集上进行了多项验证,故障识别准确度均在98%以上,表明该算法具有良好的特征提取能力,能够有效提高故障识别准确度,同时具有较好的鲁棒性和泛化能力。展开更多
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本...时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。展开更多
基金Supported by the National Natural Science Foundation of China (60973097)the Scientific Research Foundation of Liaocheng University(X0810029)~~
文摘Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results.
基金Supported by the National Natural Science Foundation of China (61273160), the Natural Science Foundation of Shandong Province of China (ZR2011FM014) and the Fundamental Research Funds for the Central Universities (10CX04046A).
文摘Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. CDJZR10118801)
文摘Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.
文摘There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
基金Sponsored by Program for New Century Excellent Talents in University of China(NCET-08-0726)Beijing Nova Program of China(2007B027)
文摘Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.
文摘In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis.
基金National Natural Science Foundation of China (60776793,60802043)National Basic Research Program of China (2010CB327900)
文摘Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
文摘局部保持投影算法的性能主要依赖于构造的最近邻图,而构造最近邻图时容易受到原始数据冗余信息的干扰,以及没有良好的依据选择合适的热核参数带来的影响,导致不能充分挖掘高维数据的局部结构信息,在低维嵌入过程中也易对噪声和异常值较为敏感,影响其在故障诊断应用中的特征提取能力。针对以上问题,提出基于收缩自编码器和流形排序的局部保持投影算法(Locality Preserving Projections algorithm based on Contractive Auto-Encoder and Manifold Ranking,CAE-MRLPP),并用于机械设备故障诊断。首先,将样本标签信息和斯皮尔曼相关系数结合,预调整样本间距;其次,引入流形排序思想,根据样本点与邻域点在彼此邻域集中的排序位置信息以及二者的互邻个数信息来构造权重;最后,将收缩自编码器与基于流形排序的局部保持投影相融合,通过梯度下降法迭代优化求解出最优的投影矩阵,进而得到故障数据的低维表示。分别在滚动轴承数据集和抽油机数据集上进行了多项验证,故障识别准确度均在98%以上,表明该算法具有良好的特征提取能力,能够有效提高故障识别准确度,同时具有较好的鲁棒性和泛化能力。
文摘时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。