A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency ...A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency estimation for wideband signal with sub-Nyquist sampling, the frequency aliasing due to sub-Nyquist sampling can be solved. This method can reduce the complexity of the overall hardware at the cost of an auxiliary sampling channel. Furthermore, in order to alleviate the computation burden for its practicability, a more simplified algorithm is put forward and its validity is proved by our numerical simulation results. The Cramer-Rao Lower Bound (CRLB) of the frequency estimation is also derived at the end of this paper.展开更多
This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies...This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance.展开更多
The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail...The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking.展开更多
A sub-Nyquist radar receiver based on photonics-assisted compressed sensing is proposed.Cascaded dictionaries are applied to extract the delay and the Doppler frequency of the echo signals,which do not need to accumul...A sub-Nyquist radar receiver based on photonics-assisted compressed sensing is proposed.Cascaded dictionaries are applied to extract the delay and the Doppler frequency of the echo signals,which do not need to accumulate multiple echo periods and can achieve better Doppler accuracy.An experiment is performed.Radar echoes with different delays and Doppler frequencies are undersampled and successfully reconstructed to obtain the delay and Doppler information of the targets.Experimental results show that the average reconstruction error of the Doppler frequency is 5.33 kHz using an 8-μs radar signal under the compression ratio of 5.The proposed method provides a promising solution for the sub-Nyquist radar receiver.展开更多
In this paper,we introduce a sub-Nyquist sampling-based receiver architecture and method for wideband spectrum sensing.Instead of recovering the original wideband analog signal,the proposed method aims to directly rec...In this paper,we introduce a sub-Nyquist sampling-based receiver architecture and method for wideband spectrum sensing.Instead of recovering the original wideband analog signal,the proposed method aims to directly reconstruct the power spectrum of the wideband analog signal from sub-Nyquist samples.Note that power spectrum alone is sufficient for wideband spectrum sensing.Since only the covariance matrix of the wideband signal is needed,the proposed method,unlike compressed sensing-based methods,does not need to impose any sparsity requirement on the frequency domain.The proposed method is based on a multi-coset sampling architecture.By exploiting the inherent sampling structure,a fast compressed power spectrum estimation method whose primary computational task consists of fast Fourier transform(FFT)is proposed.Simulation results are presented to show the effectiveness of the proposed method.展开更多
Signal sampling is a vital component in modem information technology. As the signal bandwidth becomes wider, the sampling rate of analog-to-digital conversion (ADC) based on Shannon-Nyquist theorem is more and more ...Signal sampling is a vital component in modem information technology. As the signal bandwidth becomes wider, the sampling rate of analog-to-digital conversion (ADC) based on Shannon-Nyquist theorem is more and more high and may be beyond its capacity. However the analog to information converter (AIC) based on compressed sensing (CS) is designed to sample the analog signals at a sub-Nyquist sampling rate. A new multi-rate sub-Nyquist sampling (MSS) system was proposed in this article, it has one mixer, one integrator and several parallel ADCs with different sampling rates. Simulation shows the signals can be reconstructed in high probability even though the sampling rate is much lower than the Nyquist sampling rate.展开更多
While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss,the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstance...While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss,the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstances.Previous works on sub-Nyquist sampling achieved dimensionality reduction mainly by transforming the signal in certain ways.However,the underlying structure of the sub-Nyquist sampled signal has not yet been fully exploited.In this paper,we study the fundamental limit and the method for recovering data from the sub-Nyquist sample sequence of a linearly modulated baseband signal.In this context,the signal is not eligible for dimension reduction,which makes the information loss in sub-Nyquist sampling inevitable and turns the recovery into an under-determined linear problem.The performance limits and data recovery algorithms of two different sub-Nyquist sampling schemes are studied.First,the minimum normalized Euclidean distances for the two sampling schemes are calculated which indicate the performance upper bounds of each sampling scheme.Then,with the constraint of a finite alphabet set of the transmitted symbols,a modified time-variant Viterbi algorithm is presented for efficient data recovery from the sub-Nyquist samples.The simulated bit error rates(BERs)with different sub-Nyquist sampling schemes are compared with both their theoretical limits and their Nyquist sampling counterparts,which validates the excellent performance of the proposed data recovery algorithm.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
文摘A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency estimation for wideband signal with sub-Nyquist sampling, the frequency aliasing due to sub-Nyquist sampling can be solved. This method can reduce the complexity of the overall hardware at the cost of an auxiliary sampling channel. Furthermore, in order to alleviate the computation burden for its practicability, a more simplified algorithm is put forward and its validity is proved by our numerical simulation results. The Cramer-Rao Lower Bound (CRLB) of the frequency estimation is also derived at the end of this paper.
文摘This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance.
文摘The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61971193)the Natural Science Foundation of Shanghai(No.20ZR1416100)+2 种基金the Songshan Laboratory Pre-research Project(No.YYJC072022006)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2022074)the Science and Technology Commission of Shanghai Municipality(No.22DZ2229004)。
文摘A sub-Nyquist radar receiver based on photonics-assisted compressed sensing is proposed.Cascaded dictionaries are applied to extract the delay and the Doppler frequency of the echo signals,which do not need to accumulate multiple echo periods and can achieve better Doppler accuracy.An experiment is performed.Radar echoes with different delays and Doppler frequencies are undersampled and successfully reconstructed to obtain the delay and Doppler information of the targets.Experimental results show that the average reconstruction error of the Doppler frequency is 5.33 kHz using an 8-μs radar signal under the compression ratio of 5.The proposed method provides a promising solution for the sub-Nyquist radar receiver.
文摘In this paper,we introduce a sub-Nyquist sampling-based receiver architecture and method for wideband spectrum sensing.Instead of recovering the original wideband analog signal,the proposed method aims to directly reconstruct the power spectrum of the wideband analog signal from sub-Nyquist samples.Note that power spectrum alone is sufficient for wideband spectrum sensing.Since only the covariance matrix of the wideband signal is needed,the proposed method,unlike compressed sensing-based methods,does not need to impose any sparsity requirement on the frequency domain.The proposed method is based on a multi-coset sampling architecture.By exploiting the inherent sampling structure,a fast compressed power spectrum estimation method whose primary computational task consists of fast Fourier transform(FFT)is proposed.Simulation results are presented to show the effectiveness of the proposed method.
基金supported by the China Key Projects in the National Science and Technology (2012BAF14B01)the National Science and Technology Major Project of the Ministry of Science and Technology (2013ZX03001008)+1 种基金the National Natural Science Foundation of China (61322110)the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0598)
文摘Signal sampling is a vital component in modem information technology. As the signal bandwidth becomes wider, the sampling rate of analog-to-digital conversion (ADC) based on Shannon-Nyquist theorem is more and more high and may be beyond its capacity. However the analog to information converter (AIC) based on compressed sensing (CS) is designed to sample the analog signals at a sub-Nyquist sampling rate. A new multi-rate sub-Nyquist sampling (MSS) system was proposed in this article, it has one mixer, one integrator and several parallel ADCs with different sampling rates. Simulation shows the signals can be reconstructed in high probability even though the sampling rate is much lower than the Nyquist sampling rate.
基金Project supported by the National Natural Science Foundation of China(Nos.61725104 and 61631003)Huawei Technologies Co.,Ltd.(Nos.HF2017010003,YB2015040053,and YB2013120029)。
文摘While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss,the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstances.Previous works on sub-Nyquist sampling achieved dimensionality reduction mainly by transforming the signal in certain ways.However,the underlying structure of the sub-Nyquist sampled signal has not yet been fully exploited.In this paper,we study the fundamental limit and the method for recovering data from the sub-Nyquist sample sequence of a linearly modulated baseband signal.In this context,the signal is not eligible for dimension reduction,which makes the information loss in sub-Nyquist sampling inevitable and turns the recovery into an under-determined linear problem.The performance limits and data recovery algorithms of two different sub-Nyquist sampling schemes are studied.First,the minimum normalized Euclidean distances for the two sampling schemes are calculated which indicate the performance upper bounds of each sampling scheme.Then,with the constraint of a finite alphabet set of the transmitted symbols,a modified time-variant Viterbi algorithm is presented for efficient data recovery from the sub-Nyquist samples.The simulated bit error rates(BERs)with different sub-Nyquist sampling schemes are compared with both their theoretical limits and their Nyquist sampling counterparts,which validates the excellent performance of the proposed data recovery algorithm.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.