期刊文献+
共找到592,326篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative analysis on pulverized coal combustion preheated by self-sustained purifying burner with coaxial and centrosymmetric air nozzle structures:Purification,combustion and NO_(x)emission characteristics
1
作者 Kun Su Ziqu Ouyang +4 位作者 Hongshuai Wang Hongliang Ding Wenyu Wang Qisi Chen Shuyun Li 《Chinese Journal of Chemical Engineering》 2025年第1期102-113,共12页
To optimize secondary air nozzle structure in purifying burner,this study focused on the comparison of purification,combustion and NO_(x)emission characteristics of pulverized coal preheated by a 30 kW purifying burne... To optimize secondary air nozzle structure in purifying burner,this study focused on the comparison of purification,combustion and NO_(x)emission characteristics of pulverized coal preheated by a 30 kW purifying burner with coaxial and centrosymmetric structures.Centrosymmetric structure shifted the position of main burning region down in high-temperature reduction unit(HTRU),and the number of branches differently influenced the temperature in different regions with this structure.For reductive gas components,CO concentration with centrosymmetric structure was higher compared to coaxial structure,while the differences in H_(2)and CH_(4)concentrations were smaller.Centrosymmetric structure was more disadvantageous to improve physicochemical properties of pulverized coal compared to coaxial structure,and this structure with four branches further deteriorated its properties compared to two branches.In mild combustion unit(MCU),the temperature at top was lower with centrosymmetric structure,while was higher in the rest.Centrosymmetric structure more effectively reduced NO_(x)emission compared to coaxial structure,but with slight sacrifice of combustion efficiency(h).Moreover,both two-branch and four-branch centrosymmetric structures realized ultra-low NO_(x)emission(<50 mg·m^(-3))with high h of over 98.50%,and the former was more advantageous.With this optimal structure,h and NO_(x)emission were 99.25%and 40.42 mg·m^(-3). 展开更多
关键词 Purifying-burning NO_(x)emission Coaxial structure Centrosymmetric structure
在线阅读 下载PDF
Advances in solid-state NMR methods for studying RNA structures and dynamics
2
作者 Jinhan He Xiaole Liu Shenlin Wang 《Magnetic Resonance Letters》 2025年第1期64-74,共11页
Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using convent... Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches. 展开更多
关键词 Solid-state NMR RNA STRUCTURE DYNAMics Pulse sequences
在线阅读 下载PDF
Enhanced dynamics of Al^(3+)/H^(+) ions in aqueous aluminum ion batteries:Construction of metastable structures in vanadium pentoxide upon oxygen vacancies
3
作者 Zhibao Wang Hanqing Gu +2 位作者 Tianci Wu Wenming Zhang Zhanyu Li 《Journal of Energy Chemistry》 2025年第2期562-569,I0011,共9页
In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the p... In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides. 展开更多
关键词 Vanadium pentoxide Oxygen vacancies Electrochemical activation Metastable structure
在线阅读 下载PDF
Recent progress on understanding of micro-and electronicstructures to synergistically enable the activity and stability for oxygen reduction
4
作者 Yao Liu Ruisi Li +10 位作者 Junjun Xia Chenyang Shu Jianhong Liu Shaoxin Yan Rong Jin Haifeng Chen Liumei Teng Yujun Si Chaozhong Guo Yuxin Zhang Quan Xu 《Nano Research》 2025年第3期48-72,共25页
Single-atom catalysts(SACs)are considered as the most promising nonprecious metal alternatives for oxygen reduction reactions(ORR)in proton exchange membrane fuel cells because of their high atomic utilization and exc... Single-atom catalysts(SACs)are considered as the most promising nonprecious metal alternatives for oxygen reduction reactions(ORR)in proton exchange membrane fuel cells because of their high atomic utilization and excellent catalytic performance.However,the inadequate activity and long-term stability of SACs under operational conditions significantly hinder their practical application.Therefore,this paper focuses on understanding the micro-and electronic structures that synergistically enable the activity and stability of oxygen reduction.It provides a comprehensive summary of the effects for improving the ORR catalytic activity and stability of SACs from a multilevel,multi-angle perspective,including macroscale adjustments to the overall catalyst structure,nanoscale optimization of the catalyst microstructure,and atomic-scale regulation of the active sites.Additionally,it emphasizes the importance of advanced simulation,computational methods,and characterization techniques in understanding the catalytic and degradation mechanisms of SACs during the ORR process.This review aims to provide a theoretical foundation for the synergistic catalytic mechanisms and long-term stable operation of catalytic sites in complex heterogeneous environments,thereby advancing research on low-cost,high-efficiency,and highly stable single-atom catalysts. 展开更多
关键词 single-atom catalysts(SACs) oxygen reduction reactions(ORR) structural regulation
原文传递
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces 被引量:3
5
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(LIPSS) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
在线阅读 下载PDF
李四光对地质力学(Geomechanics)的开创性贡献——纪念李四光诞辰135周年
6
作者 童亨茂 《地质力学学报》 北大核心 2025年第1期1-7,共7页
中国学术界熟知李四光创立了地质力学,但学术界对该“地质力学”的理解还存差异,部分学者对李四光创立Geomechanics(地质力学)还存在疑问,导致对李四光学术贡献的理解存在偏颇,对李四光创立的“地质力学”和国际上使用的“geomechanics... 中国学术界熟知李四光创立了地质力学,但学术界对该“地质力学”的理解还存差异,部分学者对李四光创立Geomechanics(地质力学)还存在疑问,导致对李四光学术贡献的理解存在偏颇,对李四光创立的“地质力学”和国际上使用的“geomechanics”属于同一术语还明显存在争议,这或多或少地影响地质力学(Geomechanics)术语的使用和该学科的发展。笔者在长期从事地质力学研究实践的基础上,通过对李四光地质力学著作(尤其是李四光1945年版的《地质力学之基础与方法》一书)的系统研读和分析,结合深入的调研分析,确认李四光不仅创立了地质力学(Geomechanics),而且对地质力学及构造变形力学分析有一系列开创性贡献,如提出主应力平面和主应力的概念;把摩尔圆引入构造变形力学分析;建立了广义胡克定律的解析表达式等。在此基础上,简要评述了李四光创立的地质力学,并简要回顾了地质力学的发展历史并展望其发展前景。该文在李四光诞辰135周年之际完成,以此纪念其对地质力学的开创性贡献。 展开更多
关键词 李四光 地质力学 构造变形力学分析 构造体系
在线阅读 下载PDF
Evaluating the characteristics of geological structures in karst groundwater inflow, Nowsud Tunnel
7
作者 BAYAT Narges SADEGHI Erfan NASSERY Hamid Reza 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3434-3452,共19页
Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often cau... Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often causing significant groundwater inflow during drilling due to the limitations of empirical and analytical methods. This study aims to identify the geological factors influencing water flow into the tunnel. High-flow zones' geological features have been identified and examined for this purpose. According to the geological complexity of the Nowsud tunnel, presence of different formations with different permeability and karstification have led to a high volume of underground inflow water (up to 4700 L/s) to the tunnel. The Nowsud tunnel faces significant geological and hydrogeological challenges due to its passage through the Ilam formation's LI2 unit, characterized by dissolution channels, faults, and fractures. The highest inflow rate (4700 L/s) occurred in the Hz-9 zone within the Zimkan anticline. The relationship between geological features and groundwater inflow indicates that anticlines are more susceptible to inflow than synclines. Additionally, different types of faults exhibit varying hydraulic effects, with strike-slip faults having the most significant impact on groundwater inflow, thrust faults conducting less water into the tunnel, and inflow through normal faults being negligible compared to the other two types of faults. The novelty of this paper lies in its detailed analysis of geological features influencing groundwater inflow into the Nowsud tunnel, providing empirical data on high-flow zones and differentiating the hydraulic effects of various fault types, which enhances the understanding and prediction of groundwater inflow in underground constructions. 展开更多
关键词 Geological structures Groundwater inflow HYDROGEOLOGY Nowsud tunnel KARST
在线阅读 下载PDF
VUV imaging of type-ⅠELM filamentary structures and their temporal characteristics on EAST
8
作者 Rongjing DENG Tingfeng MING +9 位作者 Bang LI Qiqi SHI Shanwei HOU Shuqi YANG Xiaoju LIU Shaocheng LIU Guoqiang LI Xiang GAO Yasuhiro SUZUKI Yunfeng LIANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期22-31,共10页
In the H-mode experiments conducted on the Experimental Advanced Superconducting Tokamak(EAST),fluctuations induced by the so-called edge localized modes(ELMs)are captured by a high-speed vacuum ultraviolet(VUV)imagin... In the H-mode experiments conducted on the Experimental Advanced Superconducting Tokamak(EAST),fluctuations induced by the so-called edge localized modes(ELMs)are captured by a high-speed vacuum ultraviolet(VUV)imaging system.Clear field line-aligned filamentary structures are analyzed in this work.Ion transport induced by ELM filaments in the scrape-off layer(SOL)under different discharge conditions is analyzed by comparing the VUV signals with the divertor probe signals.It is found that convective transport along open field lines towards the divertor target dominates the parallel ion particle transport mechanism during ELMs.The toroidal mode number of the filamentary structure derived from the VUV images increases with the electron density pedestal height.The analysis of the toroidal distribution characteristics during ELM bursts reveals toroidal asymmetry.The influence of resonance magnetic perturbation(RMP)on the ELM size is also analyzed using VUV imaging data.When the phase difference of the coil changes periodically,the widths of the filaments change as well.Additionally,the temporal evolution of the ELMs on the VUV signals provides rise time and decay time for each single ELM event,and the results indicate a negative correlation trend between these two times. 展开更多
关键词 EAST tokamak VUV imaging filamentary structure temporal characteristics RMP
在线阅读 下载PDF
Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag,Bohai Bay Basin
9
作者 Dawei DONG Li ZHAO +4 位作者 Weizhong ZHANG Jiyan LI Ruixiang ZHANG Jianlei YANG Guangzeng WANG 《Frontiers of Earth Science》 SCIE CSCD 2024年第1期227-241,共15页
Hydrocarbon exploration in the Dongying Sag is constrained by the development of many Cenozoic transtensional structures with complex patterns and dynamic mechanisms.This study uses seismic interpretation and analog m... Hydrocarbon exploration in the Dongying Sag is constrained by the development of many Cenozoic transtensional structures with complex patterns and dynamic mechanisms.This study uses seismic interpretation and analog modeling to investigate these transtensional structures.Significant results include dividing these transtensional structures into boundary fault,oblique rifting,and deep strike-slip fault controlled structures,according to the relationships between main and secondary faults.They developed in the steep slope zone,the central sag zone,and the slope zone,respectively.In profile,the transtensional structures formed appear to be semi-flower-like,step-like,or negative-flower-like.In plan-view,they appear to be broom-like,soft-linked,or en-echelon structures.Further,these transtensional structures are controlled by the oblique normal slip of boundary faults,by the oblique extension of sub-sags,and by the later extension of deep strike-slip faults.The geometric deformation of these transtensional structures is controlled by the angles between the regional extension direction and the strike of boundary faults,deep faults,or sub-sags,where a larger angle corresponds to less developed transtensional structures.Further,the transtensional structures in the Dongying Sag were created by multi-phase and multi-directional extensions in the Cenozoic—which is also controlled by pre-existing structures.The strike of newborn secondary faults was determined by the regional extension direction and pre-existing structures. 展开更多
关键词 transtensional structure seismic interpretation analogue modeling dynamic mechanism Dongying Sag
原文传递
Interpenetrated Structures for Enhancing Ion Diffusion Kinetics in Electrochemical Energy Storage Devices
10
作者 Xinzhe Xue Longsheng Feng +9 位作者 Qiu Ren Cassidy Tran Samuel Eisenberg Anica Pinongcos Logan Valdovinos Cathleen Hsieh Tae Wook Heo Marcus A.Worsley Cheng Zhu Yat Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期718-728,共11页
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining... The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity.However,conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients,limiting reaction kinetics.We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity.This free-standing device structure also avoids short-circuiting without needing a separator.The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion.Starting with a 3D-printed interpenetrated polymer substrate,we metallize it to make it conductive.This substrate has two individually addressable electrodes,allowing selective electrodeposition of energy storage materials.Using a Zn//MnO_(2) battery as a model system,the interpenetrated device outperforms conventional separate electrode configurations,improving volumetric energy density by 221%and exhibiting a higher capacity retention rate of 49%compared to 35%at temperatures from 20 to 0℃.Our study introduces a new EESD architecture applicable to Li-ion,Na-ion batteries,supercapacitors,etc. 展开更多
关键词 Interpenetrated structure 3D printing Electrochemical energy storage Ion diffusion length Inter-electrode distance
在线阅读 下载PDF
Clinical characteristics of peripapillary hyperreflective ovoid mass-like structures in myopic children
11
作者 Lu Zhang Zuo-Hui-Zi Yi +5 位作者 Xuan Jiang Gong-Peng Sun Fang Zhao Li Zhang Yi Xiang Chang-Zheng Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1292-1299,共8页
AIM:To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure(PHOMS)in myopic children and to investigate factors associated with PHOMS.METHODS:This retrospective observational study i... AIM:To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure(PHOMS)in myopic children and to investigate factors associated with PHOMS.METHODS:This retrospective observational study included 101 eyes of 101 children(age≤17y)with myopia.All included patients underwent comprehensive clinical examination.Optic nerve canal parameters,including disc diameter,optic nerve head(ONH)tilt angle,and border tissue angle were measured using serial enhanced-depth imaging spectral-domain optical coherence tomography(EDI-OCT).Based on the optic disc drusen consortium’s definition of PHOMS,eyes were classified as PHOMS group and non-PHOMS group.PHOMS was categorized according to height.RESULTS:Sixty-seven(66.3%)eyes were found with PHOMS.Small PHOMS could only be detected by optical coherence tomography(OCT).Medium PHOMS could be seen with blurred optic disc borders corresponding to OCT.The most frequent location of PHOMS was at the nasosuperior(91%,61 of 67 eyes)to ONH disc.The axial length and spherical equivalent were more myopic in the PHOMS group than in the non-PHOMS group(both P<0.001).ONH tilt angle was also significantly greater in PHOMS group than in non-PHOMS group[8.90(7.16-10.54)vs 3.93(3.09-5.25),P<0.001].Border tissue angle was significantly smaller in PHOMS group than in non-PHOMS group[29.70(20.90-43.81)vs 45.62(35.18-60.45),P<0.001].In the multivariable analysis,spherical equivalent(OR=3.246,95%CI=1.209-8.718,P=0.019)and ONH tilt angle(OR=3.275,95%CI=1.422-7.542,P=0.005)were significantly correlated with PHOMS.There was no disc diameter associated with PHOMS.In the linear regression analysis,border tissue angle was negatively associated with PHOMS height(β=-2.227,P<0.001).CONCLUSION:PHOMS is associated with optic disc tilt and optic disc nasal shift in myopia.Disc diameter is not a risk factor for PHOMS.The changes in ONH caused by axial elongation facilitated an understanding of the mechanism of PHOMS. 展开更多
关键词 peripapillary hyperreflective ovoid masslike structure MYOPIA optic disc edema enhanced-depth imaging spectral-domain optical coherence tomography
在线阅读 下载PDF
Characteristics of geological structures in Shiling and Zhuanshanhu areas of Yehe Uplift,NE China
12
作者 GUAN Yue YU Yinghua +1 位作者 ZHANG Yaxiong YUAN Hongqi 《Global Geology》 2024年第2期105-120,共16页
The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a com... The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a comprehensive study was conducted on Shiling Town and Zhuanshanhu area of Yehe Town in Siping City of Jilin Province,where is the southeastern margin of the Songliao Basin and there are a series of well-exposed fault,fold and intrusive bodies belonging to the main marginal fault system of the Songliao Basin known as the Jiamusi-Yitong(Jia-Yi)fault zone.Through profile measurement and field investigation,samples with various lithologies and distinctive features were collected.Detailed field and laboratory works include component and microstructure analysis of these samples,rock-rock contact analysis,main strike measurement and statistics analysis.These data reveal the structural characteristics of the fold,fault and intrusive bodies in the study area.The research results show that the folds are distributed in the Mesozoic strata near the main fault of the eastern branch of the Jia-Yi fault zone,and the folded strata involve the Cretaceous Denglouku and Quantou formations.In addition,the section is dominated by high-angle strikeslip thrust faults.Light-colored veins and dark-colored veins are extensively distributed in the exposed granites.Statistical analysis of joint and fault attitudes in the study area reveals a right-lateral strike-sliping along the main fault.The large-scale right-lateral strike-slip and thrust fault system in Shiling Town occurred in right-lateral transpressive stage in Late Cretaceous.Based on the results above,tectonic evolution sequence in Shiling section of the Jia-Yi fault zone during the Mesozoic can be divided into five stages:Middle Jurassic left-lateral ductile strike-slip stage,Late Jurassic compression stage,Early Cretaceous tension stage,Early Cretaceous extension stage and Late Cretaceous right-lateral transpressive stage.These may have important constraint on understanding the Mesozoic evolution of the Songliao Basin. 展开更多
关键词 Jia-Yi fault structural characteristics evolution sequence Shiling Zhuanshanhu northern segment Tanlu fault
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
13
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
A novel active-passive protection strategy endows carbonyl iron with excellent intelligent anti-corrosion and microwave absorption dual functional characteristics
14
作者 Wei Tian Quanyuan Feng +3 位作者 Linbo Zhang Yinfan Liu Xian Jian Longjiang Deng 《Nano Research》 SCIE EI 2025年第1期487-500,共14页
Carbonyl iron absorbers(CI)face significant challenges in practical applications,such as corrosion,interface bonding failure,detachment,and high maintenance costs.Herein,we have developed intelligent self-healing tech... Carbonyl iron absorbers(CI)face significant challenges in practical applications,such as corrosion,interface bonding failure,detachment,and high maintenance costs.Herein,we have developed intelligent self-healing technology based on proactive/passive mechanisms via in situ synthesis of self-healing factors(polydopamine/benzotriazole(PDA/BTA))and physical barrier layers(SiO_(2)/1,1,1,3,3,3-hexamethyl disilazane,SiO_(2)/HMDS)to enhance corrosion resistance,while also being compatible with efficient microwave absorption characteristics.The unique multiscale structure gives full play to the utilization of the roles of each functional layer,including the intelligent self-healing features of PDA/BTA,physical shielding and spatial confinement characteristics of SiO_(2)/HMDS,and magnetic-dielectric synergistic mechanism resulted from the good impedance matching characteristics,the conduction loss,the interfacial polarization loss and natural resonance.The asfabricated composites achieved an exceptional minimum reflection loss value of-55.4 dB at 10.7 GHz and the effective absorption band of 7.6 GHz.Moreover,it still exhibits obvious self-healing and corrosion resistance characteristics after 360 h corrosion treatment,ascribed to the self-healing mechanism of PDA/BTA and the blocking intervention effect of SiO_(2)/HMDS.This work is considered to pave the way for the synthesis of high-performance magnetic absorbers,especially in enhancing their intelligent self-healing ability in corrosive environments. 展开更多
关键词 microwave absorption intelligent self-healing technology carbonyl iron multiscale structure magneticdielectric synergistic mechanism
原文传递
Nucleotide Relative Molecular Similarity within Anti-Emetic/Pro-Kinetic Drug Structures
15
作者 Wynford Robert Williams 《Journal of Biosciences and Medicines》 2025年第1期215-229,共15页
The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs tar... The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs target the underlying neurotransmitter imbalances and adjust nucleotide levels in appropriate tissues, but treatment is unsatisfactory, as our understanding of the condition is far from complete. In this study, computational software is used to focus on the adenine nucleotide, ATP, as a comparative template for the structures of drugs used in gastroparesis treatment. The results demonstrate that muscarinic, dopamine, serotonin (5-HT) and histamine receptor ligand classes relate structurally and differentially to the molecular structure of ATP. In these neurotransmitter classes, compounds do not target cell membrane receptor G-protein signal transduction in a manner that provides a single mechanism for improving gastroparesis symptoms. The exploration of alternative nucleotide-based deficiencies of KATP channels, Na+/K+ATPases and guanine nucleotide directed nitrergic mechanisms should enhance our experimental approach to understanding this condition. 展开更多
关键词 GASTROPARESIS Adenine Nucleotides Neurotransmitter Agents Molecular Structure
在线阅读 下载PDF
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
16
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
在线阅读 下载PDF
Assessing Floristic Diversity, Stand Structures, and Carbon Stocks in Sacred Forests of West Cameroon: Insights from Bandrefam and Batoufam
17
作者 Nicole Liliane Maffo Maffo Hubert Kpoumie Mounmemi +7 位作者 Hermann Taedoumg Valery Noumi Noiha Karl Marx Matindje Mbaire Boris Nyeck Severin Samuel Feukeng Kenfack Mireil Carole Votio Tchoupou Eric François Menyengue Louis Zapfack 《Open Journal of Forestry》 2025年第1期69-95,共27页
Sacred forests play a valuable role in the conservation of local biodiversity and provide numerous ecosystem services in Cameroon. The aim of this study was to estimate floristic diversity, stand structures and carbon... Sacred forests play a valuable role in the conservation of local biodiversity and provide numerous ecosystem services in Cameroon. The aim of this study was to estimate floristic diversity, stand structures and carbon stocks in the sacred forests of Bandrefam and Batoufam (western Cameroon). The floristic inventory and the stand structures were carried out in 25 m × 25 m plots for individuals with diameters greater than 10 cm;5 m × 5 m for individuals with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and allometric equations. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam sacred forest and 45 species divided into 42 genera and 27 families in the Batoufam sacred forest. In the Bandrefam, the most important families are Phyllanthaceae (53.98%), Moraceae (21.69%), Lamiaceae (20.15%). At Batoufam, the most important families are Phyllanthaceae (39.73%), Fabaceae (28.47%), Araliaceae (23.77%). Malacantha alnifolia (55.14%), Vitex grandifolia (18.43%), Bosqueia angolensis (15.06%) were the most important species in Bandrefam. Otherwise, Malacantha alnifolia (28%), Polyscias fulva (22.73%), Psychotria sp. (21.28%) were the most important in Batoufam. The Bandrefam sacred forest has the highest tree density (2669 stems/ha). Total carbon stock is 484.88 ± 2.28 tC/ha at Batoufam and 313.95 ± 0.93 tC/ha at Bandrefam. The economic value varies between 5858.04 ± 27.62 USD/ha in Batoufam sacred forest and 3788.51 ± 11.26 USD/ha in Bandrefam sacred forest. The number of individuals and small-diameter trees has little influence on the carbon stocks in the trees. Medium-diameter trees store the most carbon, and very large-diameter trees, which are very poorly represented, store less carbon. In another way, wood density and the basal areas influence the carbon storage of the trees. 展开更多
关键词 Sacred Forests Stand structures Carbon Stocks West-Cameroon
在线阅读 下载PDF
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment
18
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
19
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
在线阅读 下载PDF
The Diagnosis of Maritime Structures, a Management Support Tool: Case of the Sèmè-Podji Wharf in the Republic of Benin
20
作者 Babilas Hountondji Lambert K. Ayitchéhou +1 位作者 François de Paule Codo Martin P. Aina 《Open Journal of Marine Science》 2025年第1期1-12,共12页
Port structures constitute the main link in the maritime transport chain of coastal countries and therefore contribute to their economic development. But it should be noted that the installation of said works is not w... Port structures constitute the main link in the maritime transport chain of coastal countries and therefore contribute to their economic development. But it should be noted that the installation of said works is not without consequences for the countries concerned. Benin, a country in the Gulf of Guinea, is no exception to this phenomenon because, due to its maritime history, it has a heritage of port structures. These structures, built on its coastline, cause a wide variety of environmental problems such as silting and erosion on either side of them. The general objective of this article is to contribute to the proper functionality of port facilities while minimizing environmental problems that may arise. It aims to provide managers with a tool allowing them to fully understand the state of their assets in order to rationalize maintenance actions. In order to achieve this objective, an assessment of the state of the structure, and then a structural diagnosis are necessary and recommendations can be established to restore the level of service of the latter. As a result, two examples were presented: the wharf of the Sèmè-Podji pipeline project and the maritime piles project of the Wasco de Gama bridge (control project), and recommendations adapted to this objective were established. The comparative analysis of the two examples, both maritime works, revealed an under-sizing at the level of the spans of the wharf bridge of the Sèmè-Podji pipeline project (spans of 7 m in length), while these spans vary on average by 45 m to 62 m for the Wasco da Gama bridge. Bringing the piles closer together at the Sèmè-Podji wharf reduces the energy of the current which promotes the accumulation of sediment. The structure no longer experiences a flow capable of setting in motion the sands accumulated since at least 2022. This element appears to be a fundamental characteristic explaining the erosion observed to the east of the structure. 展开更多
关键词 Structural Diagnosis WHARF PIPELINE EROSION Sèmè-Podji BENIN
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部