针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)...针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。展开更多
文摘针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。