Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn a...Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.展开更多
Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light r...Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREE-enriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.展开更多
The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the lat...The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.展开更多
The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite p...The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K20 content of majority of these rocks is greater than 3%, and, in the K20-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (6Eu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/S6Sr)i values ranging from 0.7044 to 0.7069 and ENd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garz^--Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.展开更多
Objective The Altyn Tagh marks the northern margin of the Qinghai-Tibet Plateau and lies between the Tarim block to the north and the Qaidam block,Qilian Orogen,and Kunlun orogenic belt to the south.The Altyn Tagh reg...Objective The Altyn Tagh marks the northern margin of the Qinghai-Tibet Plateau and lies between the Tarim block to the north and the Qaidam block,Qilian Orogen,and Kunlun orogenic belt to the south.The Altyn Tagh region contains ophiolite,high-to ultrahigh-pressure metamorphic rocks,and igneous rocks.Previous research has virified the occurrence of continental rifting,subduction,slab roll-back,and collision between the Tarim block and Proto-Tethys oceanic plate.Moreover,Kaladaban volcanic rocks are mainly distributed in the north Altyn region.Studies of the magmatic evolution of this region have proposed that Altyn oceanic plate was subducted during the Ordovician(Han et al.,2012;Wang et al.,2017).However,the specific timing and other aspects of the subduction are debated,and an investigation of granite porphyry in the Kaladaban area would improve our understanding of this subduction event.In this study,we present new U-Pb zircon dating result and Sr-Nd isotope composition data for granite porphyry from the North Altyn region.The objective is to constrain the timing of subduction of the North Altyn oceanic plate and establish the petrogenesis and magma source of the granite porphyry.展开更多
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are p...Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.展开更多
Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165...Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.展开更多
Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not y...Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not yet fully understood.In this study,the V(V)reduction mechanisms with concomitant V isotope fractionation by the Gram-positive bacterium Bacillus subtilis(B.subtilis)and the Gramnegative bacterium Thauera humireducens(T.humireducens)were investigated.Both strains could effectively reduce V(V),removing(90.5%±1.6%)and(93.0%±1.8%)of V(V)respectively from an initial concentration of 50 mg L^(-1) during a 10-day incubation period.V(V)was bioreduced to insoluble vanadium(IV),which was distributed both inside and outside the cells.Electron transfer via cytochrome C,nicotinamide adenine dinucleotide,and glutathione played critical roles in V(V)reduction.Metabolomic analysis showed that differentially enriched metabolites(quinone,biotin,and riboflavin)mediated electron transfer in both strains.The aqueous V in the remaining solution became isotopically heavier as V(V)bioreduction proceeded.The obtained V isotope composition dynamics followed a Rayleigh fractionation model,and the isotope enrichment factor(e)was(–0.54‰±0.04‰)for B.subtilis and(–0.32‰±0.03‰)for T.humireducens,with an insignificant difference.This study provides molecular insights into electron transfer for V(V)bioreduction and reveals V isotope fractionation during this bioprocess,which is helpful for understanding V biogeochemistry and developing novel strategies for V remediation.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carb...Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.展开更多
In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes control...In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes controlling the groundwater chemistry is a major step in the sustainable management of the aquifers.A total of 29groundwater samples were collected and analysed.Ionic ratio graphs,multivariate statistical analysis,mineral saturation indices,stable isotopes,and geostatistics methods were used to examine the sources and the quality of the groundwater.The findings describe the water types in the district as Ca-Mg-HCO_(3)-Cl,Ca-Na-HCO_(3),Na-Ca-HCO_(3),Ca-Na-HCO_(3)-Cl,Na-Ca-HCO_(3)-Cl,mix water type,NaHCO_(3)-Cl,with possible evolution to Ca-Na-Cl-HCO_(3),and Na-Ca-Cl-HCO_(3).According to the IEWQI for drinking water,around 53.6% of the samples have good quality,whereas 10.7% have very low-quality groundwater.Only 3.45% of the samples are suitable to use for irrigation without treatment,whereas 41.4% are somewhat safe with minimal treatment.Water-rock interactions,including the dissolution and weathering of silicate minerals,cation exchange processes,and human activities like mining andquarrying,are some of the main factors influencing groundwater chemistry.Principal component analysis revealed that groundwater chemistry is influenced by a combination of natural and anthropogenic sources.The APCs-MLR receptor model quantifies the factors that play important roles in groundwater salinization,including mineral dissolution and weathering(19.4%),localised Cd(16%),Ni(14.6%),Pb(12.8%),and Fe(11.4%)contamination from urbanisation while unidentified sources of pollution account for about 26.0%.The stable isotopes revealed groundwater is of meteoric origin and water-rock interaction the major mechanism for groundwater mineralization.The results of this research highlight the need of implementing an integrated strategy for managing and accessing groundwater quality.展开更多
The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were repr...The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were reproduced to assess the reliability of these theoretical models.The production of neutron-deficient transcalifornium nuclei with Z=99-106 was examined in multinucleon transfer reactions,including^(124)Xe+^(248)Cm,^(124)Xe+^(249)Cf,and^(129)Xe+^(249)Cf.Both the driving potential and the neutron-to-proton equilibration ratio were found to dominate the nucleon transfer process.The reaction^(124)Xe+^(249)Cf is proposed as a promising projectile-target combination for producing neutron-deficient isotopes with Z=99-106,with the optimal incident energy identified as E_(c.m.)=533.64 MeV.Production cross-sections of 25 unknown neutron-deficient trancalifornium isotopes with cross-sections greater than 1 pb were predicted.展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
Up to now, there were no systematic studies of geochemistry and isotopic age for the Yixian (义县) fluorite deposit, western Liaoning (辽宁) Province, China. Based on the analysis of metallogenic geological settin...Up to now, there were no systematic studies of geochemistry and isotopic age for the Yixian (义县) fluorite deposit, western Liaoning (辽宁) Province, China. Based on the analysis of metallogenic geological setting, we studied the REE, Rb-Sr and Sm-Nd isotopes. The chondrite-normalized REE patterns of fluorite are characterized by moderate LREE depletion (LREE/HREE=0.95-3.57, (La/Yb)N=0.08-2.84) and enrichment of Sr (146×10^-6-596×10^-6) and moderately positive Eu anomalies (δEu=1.10-1.34), which are similar to those of the host Mesoproterozoic carbonate rocks. The fluorite display (^87Sr/^86Sr)t=-0.708 5, (^143Nd/^144Nd)t=-0.511 785, and δNd(t)=-12.8, which are similar to those of the host Mesoproterozoic carbonate rocks and volcanic rocks of Middle Jurassic Lanqi (蓝旗) Formation. The REE and Sr-Nd isotope geochemistry suggest that the source of the ore-forming material may be the volcanic rocks of Lanqi Formation and host carbonate rocks. The Sm-Nd isochron age of 154±14 Ma (MSWD=0.23) indicates that the Yixian fluorite mineralization nearly corresponds to the period of Lanqi Formation. Based on the integrated geological and geochemical studies, coupled with previous studies, we suggest that Yixian fluorite deposit formed in the extension setting of postcoilisional stage and may be attributed to the partial melting of ancient basaltic rocks in the lower crust induced by underplating of basic magma and to the reaction between the F-rich ore-forming fluids and the host carbonate rocks.展开更多
High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the effi...High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.展开更多
The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to colli...The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.展开更多
The Niujuan-Yingfang Pb-Zn-Ag deposit in northern North China Craton(NCC)is hosted at the contact zone between Permian biotite monzogranite and Hongqiyingzi Group migmatitic gneiss.The orebodies are structurally contr...The Niujuan-Yingfang Pb-Zn-Ag deposit in northern North China Craton(NCC)is hosted at the contact zone between Permian biotite monzogranite and Hongqiyingzi Group migmatitic gneiss.The orebodies are structurally controlled by NE-trending F1 fault.Mineralization can be divided into three stages:(1)siliceous-chlorite-pyrite stage,(2)quartz-Ag-base metal stage,and(3)fluorite-calcite stage.Four types of fluid inclusions were identified,including:(1)liquid-rich aqueous inclusions,(2)vapor-rich inclusions,(3)liquid-rich,solid-bearing inclusions,and(4)CO2-bearing inclusions.Mi-crothermometric measurements reveal that from stage I to III,the homogenization temperatures range from 317 to 262℃,from 297 to 192℃,and from 248 to 151℃,respectively,and the fluid salinities are in the ranges from 1.1 wt.%to 6.5 wt.%,1.2 wt.%to 6.0 wt.%and 0.7 wt.%to 4.0 wt.%NaCl equiva-lents,respectively.Fluid boiling and cooling are the two important mechanisms for ore precipitation according to microthermometric data,and fluid-rock interaction is also indispensable.Laser Raman spectroscopic analyses indicate the fluid system of the deposit is composed of CO2-NaCl-H2O±N2.Me-tallogenic fluorites yielded a Sm-Nd isochron age of 158±35 Ma.Theδ34SV-CDt values of sulfides range from-1.3‰ to 6.3‰,suggesting that the sulfur may be inherited from the basement metamorphic ig-neous rocks.Hydrogen and oxygen isotopic compositions of quartz indicate a metamorphic origin for the ore-forming fluid,and the proportion of meteoric water increased during the ore-forming processes.Sr-Nd isotopes of fluorites show a crustal source for the ore-forming fluid,with primary metamorphic fluid mixed with meteoric water during ascent to lower crustal levels.Combined with the geological,metallogenic epoch,fluid inclusions,H-O-S and Sr-Nd isotopes characteristics of the deposit,we suggest that the Niujuan-Yingfang deposit belongs to the medium-low temperature hydrothermal vein-type Pb-Zn-Ag polymetallic deposit,with ore-forming fluids dominantly originated from metamorphic fluids.展开更多
This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province,...This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of -4.8‰--7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
文摘Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.
基金This study was supported by the National Natural Science Foundation of China under the contract No.40276024 and 49873015.
文摘Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREE-enriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.
文摘The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.
基金supported by the National Science Foundation of China (NSFC) project(41203039)the innovation team of ore-forming dynamics and prediction of concealed deposits, KMUST(2008)
文摘The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K20 content of majority of these rocks is greater than 3%, and, in the K20-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (6Eu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/S6Sr)i values ranging from 0.7044 to 0.7069 and ENd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garz^--Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.
基金jointly supported by the National Key R&D Program of China(Grant No.2018YFC0603704)a Geological Survey Project of the China Geological Survey(DD20160050).
文摘Objective The Altyn Tagh marks the northern margin of the Qinghai-Tibet Plateau and lies between the Tarim block to the north and the Qaidam block,Qilian Orogen,and Kunlun orogenic belt to the south.The Altyn Tagh region contains ophiolite,high-to ultrahigh-pressure metamorphic rocks,and igneous rocks.Previous research has virified the occurrence of continental rifting,subduction,slab roll-back,and collision between the Tarim block and Proto-Tethys oceanic plate.Moreover,Kaladaban volcanic rocks are mainly distributed in the north Altyn region.Studies of the magmatic evolution of this region have proposed that Altyn oceanic plate was subducted during the Ordovician(Han et al.,2012;Wang et al.,2017).However,the specific timing and other aspects of the subduction are debated,and an investigation of granite porphyry in the Kaladaban area would improve our understanding of this subduction event.In this study,we present new U-Pb zircon dating result and Sr-Nd isotope composition data for granite porphyry from the North Altyn region.The objective is to constrain the timing of subduction of the North Altyn oceanic plate and establish the petrogenesis and magma source of the granite porphyry.
基金New Delhi sanctioned a major research project(IR/S4/ESF-18/2011 dated 12.11.2013)to NVCR which made this research possibleDST-SERB for financial assistance in the form of a research scientist. AS acknowledges CSIR for awarding JRF(NET)
文摘Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.
基金Granted jointly by the State Key Fundamental Research Project (Grant No. 1999CB403209) the National Natural Science Foundation of China (Grant No. 40132010).
文摘Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.
基金supported by the National Natural Science Foundation of China(U21A2033)the Fundamental Research Funds for the Central Universities(2652022103).
文摘Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not yet fully understood.In this study,the V(V)reduction mechanisms with concomitant V isotope fractionation by the Gram-positive bacterium Bacillus subtilis(B.subtilis)and the Gramnegative bacterium Thauera humireducens(T.humireducens)were investigated.Both strains could effectively reduce V(V),removing(90.5%±1.6%)and(93.0%±1.8%)of V(V)respectively from an initial concentration of 50 mg L^(-1) during a 10-day incubation period.V(V)was bioreduced to insoluble vanadium(IV),which was distributed both inside and outside the cells.Electron transfer via cytochrome C,nicotinamide adenine dinucleotide,and glutathione played critical roles in V(V)reduction.Metabolomic analysis showed that differentially enriched metabolites(quinone,biotin,and riboflavin)mediated electron transfer in both strains.The aqueous V in the remaining solution became isotopically heavier as V(V)bioreduction proceeded.The obtained V isotope composition dynamics followed a Rayleigh fractionation model,and the isotope enrichment factor(e)was(–0.54‰±0.04‰)for B.subtilis and(–0.32‰±0.03‰)for T.humireducens,with an insignificant difference.This study provides molecular insights into electron transfer for V(V)bioreduction and reveals V isotope fractionation during this bioprocess,which is helpful for understanding V biogeochemistry and developing novel strategies for V remediation.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
基金Supported by the National Natural Science Foundation of China(Nos.42322302,42373048)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2022207)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020303)the Laoshan Laboratory(No.LSKJ202204100)。
文摘Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.
文摘In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes controlling the groundwater chemistry is a major step in the sustainable management of the aquifers.A total of 29groundwater samples were collected and analysed.Ionic ratio graphs,multivariate statistical analysis,mineral saturation indices,stable isotopes,and geostatistics methods were used to examine the sources and the quality of the groundwater.The findings describe the water types in the district as Ca-Mg-HCO_(3)-Cl,Ca-Na-HCO_(3),Na-Ca-HCO_(3),Ca-Na-HCO_(3)-Cl,Na-Ca-HCO_(3)-Cl,mix water type,NaHCO_(3)-Cl,with possible evolution to Ca-Na-Cl-HCO_(3),and Na-Ca-Cl-HCO_(3).According to the IEWQI for drinking water,around 53.6% of the samples have good quality,whereas 10.7% have very low-quality groundwater.Only 3.45% of the samples are suitable to use for irrigation without treatment,whereas 41.4% are somewhat safe with minimal treatment.Water-rock interactions,including the dissolution and weathering of silicate minerals,cation exchange processes,and human activities like mining andquarrying,are some of the main factors influencing groundwater chemistry.Principal component analysis revealed that groundwater chemistry is influenced by a combination of natural and anthropogenic sources.The APCs-MLR receptor model quantifies the factors that play important roles in groundwater salinization,including mineral dissolution and weathering(19.4%),localised Cd(16%),Ni(14.6%),Pb(12.8%),and Fe(11.4%)contamination from urbanisation while unidentified sources of pollution account for about 26.0%.The stable isotopes revealed groundwater is of meteoric origin and water-rock interaction the major mechanism for groundwater mineralization.The results of this research highlight the need of implementing an integrated strategy for managing and accessing groundwater quality.
基金supported partly by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12105019,and 12047513)+1 种基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2023-05)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike ZY22096024)。
文摘The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were reproduced to assess the reliability of these theoretical models.The production of neutron-deficient transcalifornium nuclei with Z=99-106 was examined in multinucleon transfer reactions,including^(124)Xe+^(248)Cm,^(124)Xe+^(249)Cf,and^(129)Xe+^(249)Cf.Both the driving potential and the neutron-to-proton equilibration ratio were found to dominate the nucleon transfer process.The reaction^(124)Xe+^(249)Cf is proposed as a promising projectile-target combination for producing neutron-deficient isotopes with Z=99-106,with the optimal incident energy identified as E_(c.m.)=533.64 MeV.Production cross-sections of 25 unknown neutron-deficient trancalifornium isotopes with cross-sections greater than 1 pb were predicted.
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)the 111 Project (No.B07011)
文摘Up to now, there were no systematic studies of geochemistry and isotopic age for the Yixian (义县) fluorite deposit, western Liaoning (辽宁) Province, China. Based on the analysis of metallogenic geological setting, we studied the REE, Rb-Sr and Sm-Nd isotopes. The chondrite-normalized REE patterns of fluorite are characterized by moderate LREE depletion (LREE/HREE=0.95-3.57, (La/Yb)N=0.08-2.84) and enrichment of Sr (146×10^-6-596×10^-6) and moderately positive Eu anomalies (δEu=1.10-1.34), which are similar to those of the host Mesoproterozoic carbonate rocks. The fluorite display (^87Sr/^86Sr)t=-0.708 5, (^143Nd/^144Nd)t=-0.511 785, and δNd(t)=-12.8, which are similar to those of the host Mesoproterozoic carbonate rocks and volcanic rocks of Middle Jurassic Lanqi (蓝旗) Formation. The REE and Sr-Nd isotope geochemistry suggest that the source of the ore-forming material may be the volcanic rocks of Lanqi Formation and host carbonate rocks. The Sm-Nd isochron age of 154±14 Ma (MSWD=0.23) indicates that the Yixian fluorite mineralization nearly corresponds to the period of Lanqi Formation. Based on the integrated geological and geochemical studies, coupled with previous studies, we suggest that Yixian fluorite deposit formed in the extension setting of postcoilisional stage and may be attributed to the partial melting of ancient basaltic rocks in the lower crust induced by underplating of basic magma and to the reaction between the F-rich ore-forming fluids and the host carbonate rocks.
基金co-supported by the National Natural Science Foundation of China (Nos. 41427804, 41421002, 41373004)Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1281)the MOST Research Foundation from the State Key Laboratory of Continental Dynamics
文摘High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.
基金co-funded by the Land and Resources Survey Project of China(Grant no.12120113042200)National Natural Science Foundation of China(41421002)the MOST Special Fund from State Key Laboratory of Continental Dynamics,Northwest University(201210133)
文摘The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.
基金This study was supported by the National Key Research and Development Program(No.2018YFC0603801)the China Geological Survey Program(No.12120115033601).
文摘The Niujuan-Yingfang Pb-Zn-Ag deposit in northern North China Craton(NCC)is hosted at the contact zone between Permian biotite monzogranite and Hongqiyingzi Group migmatitic gneiss.The orebodies are structurally controlled by NE-trending F1 fault.Mineralization can be divided into three stages:(1)siliceous-chlorite-pyrite stage,(2)quartz-Ag-base metal stage,and(3)fluorite-calcite stage.Four types of fluid inclusions were identified,including:(1)liquid-rich aqueous inclusions,(2)vapor-rich inclusions,(3)liquid-rich,solid-bearing inclusions,and(4)CO2-bearing inclusions.Mi-crothermometric measurements reveal that from stage I to III,the homogenization temperatures range from 317 to 262℃,from 297 to 192℃,and from 248 to 151℃,respectively,and the fluid salinities are in the ranges from 1.1 wt.%to 6.5 wt.%,1.2 wt.%to 6.0 wt.%and 0.7 wt.%to 4.0 wt.%NaCl equiva-lents,respectively.Fluid boiling and cooling are the two important mechanisms for ore precipitation according to microthermometric data,and fluid-rock interaction is also indispensable.Laser Raman spectroscopic analyses indicate the fluid system of the deposit is composed of CO2-NaCl-H2O±N2.Me-tallogenic fluorites yielded a Sm-Nd isochron age of 158±35 Ma.Theδ34SV-CDt values of sulfides range from-1.3‰ to 6.3‰,suggesting that the sulfur may be inherited from the basement metamorphic ig-neous rocks.Hydrogen and oxygen isotopic compositions of quartz indicate a metamorphic origin for the ore-forming fluid,and the proportion of meteoric water increased during the ore-forming processes.Sr-Nd isotopes of fluorites show a crustal source for the ore-forming fluid,with primary metamorphic fluid mixed with meteoric water during ascent to lower crustal levels.Combined with the geological,metallogenic epoch,fluid inclusions,H-O-S and Sr-Nd isotopes characteristics of the deposit,we suggest that the Niujuan-Yingfang deposit belongs to the medium-low temperature hydrothermal vein-type Pb-Zn-Ag polymetallic deposit,with ore-forming fluids dominantly originated from metamorphic fluids.
基金This work was financially funded by the Chinese Academy of Sciences (Grant. No. KZCX1-07) the Ministry of Science and Technology of China (Grant No. 1999043210)partly by the National Natural Science Foundation of China (Grant. No. 49873022).
文摘This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of -4.8‰--7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.