期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Double-Weighted Deterministic Extreme Learning Machine Based on Sparse Denoising Autoencoder and Its Applications
1
作者 Liang Luo Bolin Liao +1 位作者 Cheng Hua Rongbo Lu 《Journal of Computer and Communications》 2022年第11期138-153,共16页
Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe... Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm. 展开更多
关键词 Extreme Learning Machine sparse denoising Autoencoder Pseudo-Inverse Method Miao Character Recognition
在线阅读 下载PDF
Prediction of Disease Transmission Risk in Universities Based on SEIR and Multi-hidden Layer Back-propagation Neural Network Model
2
作者 Jiangjiang Li Lijuan Feng 《IJLAI Transactions on Science and Engineering》 2024年第1期24-31,共8页
Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyz... Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections. 展开更多
关键词 Disease transmission SEIR model PREDICTION Stacked sparse denoising automatic coding network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部