Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so...Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.展开更多
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re...The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial ...With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.展开更多
Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicate...Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicated that the difference in yield among varieties was obvious, yield in common field was among 5 226.6-9 202.1kg/hm^2, and yield in acidified field was among 3 643.2-7 714. 8 kg/hm^2. Compared with common field, yield of Yueyou 6135, Huayou 18, Jinyou 284 and Ⅱyou 46 increased by 3.24%-26.33% in acidified field, while yield of other varieties decreased by 2.04%-56.79% in acidified field. According to acidification sensitivity, Wufengyou T025, Jinchuyou No.148, Yueyou No.6135, Shenyou No.9586, Xiangfengyou No.103,Zhongyou No.288, Nongxiang No.18, Shanyou No.432, Ⅱ you No.6, and Zhong 9A/R10402 were sensitive to soil acidification; Wuyou No.308, Zhunliangyou No.608,Fengyuanyou No.227, Fengyou No.1167, Fengyuanyou No.299, T you No.272, and Zhong 9A/R9963 were moderately sensitive to soil acidification; Yueyou No.9113,Jinyou No.284, Shenyou No.9588, Huayou No.18, Ⅱ you No.46 and Ⅱ you No.3027 were slightly sensitive to soil acidification展开更多
A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of t...A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE) has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry ( 19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and 〈0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.展开更多
The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the...The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.展开更多
The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is comp...The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.展开更多
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the...It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.展开更多
Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. St...Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.展开更多
Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the eff...Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the effects of applied pressure and moisture content on strength indices such as bulk density, penetration resistance and shear strength of the soil and to develop relationships between the strength indices for predictive purposes necessary in soil management. The compression was carried out at different moisture contents determined according to the consistency limits of the soil. The applied pressure ranged from 75 to 600 kPa. Values of bulk density, penetration resistance and shear strength increased with increase in moisture content up to peak values after which the values decreased with further increase in moisture content. Regression models were used to describe the trends in the results for the soil. Results also showed that bulk density and soil strength normally regarded as indicators of soil quality are affected by moisture content and applied pressure and that these properties can be predicted using the models generated from the study.展开更多
One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimat...One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimate soil resistance to the partially-embedded pipeline under the action of ocean currents. Two typical end-constraints of the submarine pipelines are examined, i.e. freely-laid pipes and anti-rolling pipes. The proposed numerical model is verified with the existing mechanical-actuator experiments. The magnitude of lateral-soil-resistance coefficient for the examined anti-rolling pipes is much larger than that for the freely-laid pipes, indicating that the end-constraint condition significantly affects the lateral stability of the untrenched pipeline under ocean currents. The parametric study indicates that, the variation of lateral-soil-resistance coefficient with the dimensionless submerged weight of pipe is affected greatly by the angle of internal friction of soil, the pipe-soil friction coefficient, etc.展开更多
The total potassium (K) content of soils in Heilongjiang was relatively high in general and the available potassium content in soils was quite different for different soil types. The results of electro - ultra- filtra...The total potassium (K) content of soils in Heilongjiang was relatively high in general and the available potassium content in soils was quite different for different soil types. The results of electro - ultra- filtration (EUF) analysis showed that the dark brown forest soils and the black soils in the northern part contained relatively high EUF-K, ranged from 12.5 to 15.7 mg per 100 g soil. In the black soils in the southern part, the EUF-K ranged from 8 to 9 mg per 100 g soil. The albic and aeolian sandy soils contained low EUF-K, ranged from 3.2 to 4.8 mg per 100 g soil. Field experiment in 1982 indicated that potassium fertilizer in soils with medium or low EUF-K, increased soybean yield by 17%-34%, and obviously prevented the epidemic of meadow moth and soybean mosaic virus. Application of potassium fertilizer increased the protein and total sugar content of the plants, promoted transportation of nutrients, speeded up the growth of the plants, improved the resistance of crops to adverse conditions. Application of potassium fertilizer resulted in early maturity of crops (4 - 7 days earlier than control), which had great significance for preventing crops from early frost damage. Hence, in order to keep nutrients balance in the soil and to increase soil fertility, potassium fertilizer or materials containing potassium must be applied to soils with medium and low EUF- K, such as black soils in the south part, ablic soils and aeolian sandy soils in Heilongjiang province.展开更多
Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead ...Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic.展开更多
Introduction: Bacillus cereus and spores produced in various ecological niches are responsible for toxic infections in humans. This study is conducted to determine the antibiotics resistance profile of B. cereus strai...Introduction: Bacillus cereus and spores produced in various ecological niches are responsible for toxic infections in humans. This study is conducted to determine the antibiotics resistance profile of B. cereus strains isolated from soil and pepper consummated in Brazzaville. Methodology: An antimicrobial susceptibility test of 16 B. cereus strains from soil and peppers was performed using 11 antibiotics by the Kirby-Bauer’s diffusion on disc method. Results: Results revealed 100% (16/16) of resistance in penicillin G, amoxicillin, ceftazidime, rifampicin, and colistin, also 18.75% (3/16), 11.76% (2/16), and 18.75% (3/16) of resistance in doripenem, vancomycin and chloramphenicol respectively. In addition, we have observed 100% (16/16), 81.25% (13/16), 76.47% (13/16), 35.29% (5/16), 35.50% (6/16), and 12.5% (2/16) of sensitivity to line-zolid, tigecycline, ciprofloxacin, vancomycin, doripenem and chloram-phenicol respectively. However, all strains have been multidrug resistant (MDR) to betalactams, polypeptides, and ansamycins. Moreover, 7 strains (43.75%) have been variably multiresistant. One strain, Ri10 has been resistant to beta-lactams, polypeptides, ansamycins, cyclins and glycopeptides. No strain was ultraresistant (XDR) or largely insensitive (PDR) to different antibiotics. Conclusion: This study reveals that 51% of strains have been resistant to antibiotics, 32% are sensitive, and 17% have intermediate resistance. These results partly explain the high rate of gastroenteritis observed in Brazzaville due to food poisoning.展开更多
Numerous field tests indicate that the soilestructure interaction (SSI) has a significant impact on thedynamic characteristics of super-tall buildings, which may lead to unexpected structural seismic responsesand/or...Numerous field tests indicate that the soilestructure interaction (SSI) has a significant impact on thedynamic characteristics of super-tall buildings, which may lead to unexpected structural seismic responsesand/or failure. Taking the Shanghai Tower with a total height of 632 m as the research object, thesubstructure approach is used to simulate the SSI effect on the seismic responses of Shanghai Tower. Therefined finite element (FE) model of the superstructure of Shanghai Tower and the simplified analyticalmodel of the foundation and adjacent soil are established. Subsequently, the collapse process of ShanghaiTower taking into account the SSI is predicted, as well as its final collapse mechanism. The influences ofthe SSI on the collapse resistance capacity and failure sequences are discussed. The results indicate that,when considering the SSI, the fundamental period of Shanghai Tower has been extended significantly,and the collapse margin ratio has been improved, with a corresponding decrease of the seismic demand.In addition, the SSI has some impact on the failure sequences of Shanghai Tower subjected to extremeearthquakes, but a negligible impact on the final failure modes. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolutio...The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolution of soil compaction state after aeration was also conducted in four stages of measurement. This operation aims to improve the structure and soil texture, which is also called "perforation" or "coring". The taken cores leaving on the soil holes of adjustable depth and density (350 holes/mE) are made with an aerator machine called Vertidrain. Soil resistance to penetration and density were determined at the initial state before aeration as well as 10, 20, and 30 days after aeration. Compared to the initial state, the results show that mechanical aeration greatly affects the grassy sward ground by reducing its resistance to penetration as 35% and 43% decrease in penetration resistance were noticed at 5 cm depth l0 and 20 days after aeration, respectively. Also, resistance to penetration decreased by 41% and 48% at 15 cm depth during the same two periods of time with a relatively constant moisture content. However, soil resistance to penetration at 5 and 15 cm depths only decreased by 21% and 26%, respectively. Regarding the soil density measured after aeration, a significant improvement at the 1% level with the method of variance analysis was observed compared to that at the initial state (e.g. 1.33 g·cm^-3) Indeed, the density was 1.29, 1.26 and 1.30 gcm^-3 10, 20 and 30 days after aeration, respectively.展开更多
The study carried out concerns the valorization of agricultural waste for the development of biosourced materials that can be used as insulation in homes. This article is devoted to the influence of gum arabic on the ...The study carried out concerns the valorization of agricultural waste for the development of biosourced materials that can be used as insulation in homes. This article is devoted to the influence of gum arabic on the mechanical and thermal properties of clay soils in the town of Abéché. The mechanical tests were carried out using the CBR press equipped with two devices (bending device and compression device). Thermal property such as thermal conductivity was determined by the hot wire method and thermal resistance was derived by calculation. Thus, the tests were carried out on test pieces made from a mixture of clay and gum arabic in solution. The experimental program includes seven formulations (0%, 2%, 4%, 6%, 8%, 10% and 12%). The results obtained showed that the best flexural and compressive strengths are obtained by using gum arabic with a rate of 8% and a maximum stress of 4.3 MPa. In addition, the thermal results also showed that the thermal conductivity decreases when the percentage of gum arabic increases, which makes it possible to increase the thermal resistance, thus confirming the capacity of gum arabic to provide thermal insulation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012,42230710)Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,Chinese Academy of Sciences(Grant No.xbzg-zdsys-202107).
文摘Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.
基金The work was supported by the National Natural Science Foundation of China(Grant No.51978540).
文摘The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
文摘With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.
基金Supported by National Nature Science Foundation of China(31171494)Projects in the National Science&Technology Pillar Program(2011BAD16B01,2012BAD04B10-01,2013BAD07B11-02)~~
文摘Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicated that the difference in yield among varieties was obvious, yield in common field was among 5 226.6-9 202.1kg/hm^2, and yield in acidified field was among 3 643.2-7 714. 8 kg/hm^2. Compared with common field, yield of Yueyou 6135, Huayou 18, Jinyou 284 and Ⅱyou 46 increased by 3.24%-26.33% in acidified field, while yield of other varieties decreased by 2.04%-56.79% in acidified field. According to acidification sensitivity, Wufengyou T025, Jinchuyou No.148, Yueyou No.6135, Shenyou No.9586, Xiangfengyou No.103,Zhongyou No.288, Nongxiang No.18, Shanyou No.432, Ⅱ you No.6, and Zhong 9A/R10402 were sensitive to soil acidification; Wuyou No.308, Zhunliangyou No.608,Fengyuanyou No.227, Fengyou No.1167, Fengyuanyou No.299, T you No.272, and Zhong 9A/R9963 were moderately sensitive to soil acidification; Yueyou No.9113,Jinyou No.284, Shenyou No.9588, Huayou No.18, Ⅱ you No.46 and Ⅱ you No.3027 were slightly sensitive to soil acidification
文摘A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE) has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry ( 19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and 〈0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.
文摘The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.
基金sup port provided by the Key Project of Ministry of Edu-cation of P.R.China(Grant No.02089)the National Key Grant Program of Basic Research De-velopment(Grant No.2002CCA01200).
文摘The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.
文摘It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.
文摘Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.
文摘Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the effects of applied pressure and moisture content on strength indices such as bulk density, penetration resistance and shear strength of the soil and to develop relationships between the strength indices for predictive purposes necessary in soil management. The compression was carried out at different moisture contents determined according to the consistency limits of the soil. The applied pressure ranged from 75 to 600 kPa. Values of bulk density, penetration resistance and shear strength increased with increase in moisture content up to peak values after which the values decreased with further increase in moisture content. Regression models were used to describe the trends in the results for the soil. Results also showed that bulk density and soil strength normally regarded as indicators of soil quality are affected by moisture content and applied pressure and that these properties can be predicted using the models generated from the study.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)
文摘One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimate soil resistance to the partially-embedded pipeline under the action of ocean currents. Two typical end-constraints of the submarine pipelines are examined, i.e. freely-laid pipes and anti-rolling pipes. The proposed numerical model is verified with the existing mechanical-actuator experiments. The magnitude of lateral-soil-resistance coefficient for the examined anti-rolling pipes is much larger than that for the freely-laid pipes, indicating that the end-constraint condition significantly affects the lateral stability of the untrenched pipeline under ocean currents. The parametric study indicates that, the variation of lateral-soil-resistance coefficient with the dimensionless submerged weight of pipe is affected greatly by the angle of internal friction of soil, the pipe-soil friction coefficient, etc.
文摘The total potassium (K) content of soils in Heilongjiang was relatively high in general and the available potassium content in soils was quite different for different soil types. The results of electro - ultra- filtration (EUF) analysis showed that the dark brown forest soils and the black soils in the northern part contained relatively high EUF-K, ranged from 12.5 to 15.7 mg per 100 g soil. In the black soils in the southern part, the EUF-K ranged from 8 to 9 mg per 100 g soil. The albic and aeolian sandy soils contained low EUF-K, ranged from 3.2 to 4.8 mg per 100 g soil. Field experiment in 1982 indicated that potassium fertilizer in soils with medium or low EUF-K, increased soybean yield by 17%-34%, and obviously prevented the epidemic of meadow moth and soybean mosaic virus. Application of potassium fertilizer increased the protein and total sugar content of the plants, promoted transportation of nutrients, speeded up the growth of the plants, improved the resistance of crops to adverse conditions. Application of potassium fertilizer resulted in early maturity of crops (4 - 7 days earlier than control), which had great significance for preventing crops from early frost damage. Hence, in order to keep nutrients balance in the soil and to increase soil fertility, potassium fertilizer or materials containing potassium must be applied to soils with medium and low EUF- K, such as black soils in the south part, ablic soils and aeolian sandy soils in Heilongjiang province.
文摘Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic.
文摘Introduction: Bacillus cereus and spores produced in various ecological niches are responsible for toxic infections in humans. This study is conducted to determine the antibiotics resistance profile of B. cereus strains isolated from soil and pepper consummated in Brazzaville. Methodology: An antimicrobial susceptibility test of 16 B. cereus strains from soil and peppers was performed using 11 antibiotics by the Kirby-Bauer’s diffusion on disc method. Results: Results revealed 100% (16/16) of resistance in penicillin G, amoxicillin, ceftazidime, rifampicin, and colistin, also 18.75% (3/16), 11.76% (2/16), and 18.75% (3/16) of resistance in doripenem, vancomycin and chloramphenicol respectively. In addition, we have observed 100% (16/16), 81.25% (13/16), 76.47% (13/16), 35.29% (5/16), 35.50% (6/16), and 12.5% (2/16) of sensitivity to line-zolid, tigecycline, ciprofloxacin, vancomycin, doripenem and chloram-phenicol respectively. However, all strains have been multidrug resistant (MDR) to betalactams, polypeptides, and ansamycins. Moreover, 7 strains (43.75%) have been variably multiresistant. One strain, Ri10 has been resistant to beta-lactams, polypeptides, ansamycins, cyclins and glycopeptides. No strain was ultraresistant (XDR) or largely insensitive (PDR) to different antibiotics. Conclusion: This study reveals that 51% of strains have been resistant to antibiotics, 32% are sensitive, and 17% have intermediate resistance. These results partly explain the high rate of gastroenteritis observed in Brazzaville due to food poisoning.
基金the financial support received from the National Nature Science Foundation of China (Nos.51222804,91315301)the Beijing Natural Science Foundation (No.8142024)the Fok Ying Dong Education Foundation (No.131071)
文摘Numerous field tests indicate that the soilestructure interaction (SSI) has a significant impact on thedynamic characteristics of super-tall buildings, which may lead to unexpected structural seismic responsesand/or failure. Taking the Shanghai Tower with a total height of 632 m as the research object, thesubstructure approach is used to simulate the SSI effect on the seismic responses of Shanghai Tower. Therefined finite element (FE) model of the superstructure of Shanghai Tower and the simplified analyticalmodel of the foundation and adjacent soil are established. Subsequently, the collapse process of ShanghaiTower taking into account the SSI is predicted, as well as its final collapse mechanism. The influences ofthe SSI on the collapse resistance capacity and failure sequences are discussed. The results indicate that,when considering the SSI, the fundamental period of Shanghai Tower has been extended significantly,and the collapse margin ratio has been improved, with a corresponding decrease of the seismic demand.In addition, the SSI has some impact on the failure sequences of Shanghai Tower subjected to extremeearthquakes, but a negligible impact on the final failure modes. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolution of soil compaction state after aeration was also conducted in four stages of measurement. This operation aims to improve the structure and soil texture, which is also called "perforation" or "coring". The taken cores leaving on the soil holes of adjustable depth and density (350 holes/mE) are made with an aerator machine called Vertidrain. Soil resistance to penetration and density were determined at the initial state before aeration as well as 10, 20, and 30 days after aeration. Compared to the initial state, the results show that mechanical aeration greatly affects the grassy sward ground by reducing its resistance to penetration as 35% and 43% decrease in penetration resistance were noticed at 5 cm depth l0 and 20 days after aeration, respectively. Also, resistance to penetration decreased by 41% and 48% at 15 cm depth during the same two periods of time with a relatively constant moisture content. However, soil resistance to penetration at 5 and 15 cm depths only decreased by 21% and 26%, respectively. Regarding the soil density measured after aeration, a significant improvement at the 1% level with the method of variance analysis was observed compared to that at the initial state (e.g. 1.33 g·cm^-3) Indeed, the density was 1.29, 1.26 and 1.30 gcm^-3 10, 20 and 30 days after aeration, respectively.
文摘The study carried out concerns the valorization of agricultural waste for the development of biosourced materials that can be used as insulation in homes. This article is devoted to the influence of gum arabic on the mechanical and thermal properties of clay soils in the town of Abéché. The mechanical tests were carried out using the CBR press equipped with two devices (bending device and compression device). Thermal property such as thermal conductivity was determined by the hot wire method and thermal resistance was derived by calculation. Thus, the tests were carried out on test pieces made from a mixture of clay and gum arabic in solution. The experimental program includes seven formulations (0%, 2%, 4%, 6%, 8%, 10% and 12%). The results obtained showed that the best flexural and compressive strengths are obtained by using gum arabic with a rate of 8% and a maximum stress of 4.3 MPa. In addition, the thermal results also showed that the thermal conductivity decreases when the percentage of gum arabic increases, which makes it possible to increase the thermal resistance, thus confirming the capacity of gum arabic to provide thermal insulation.