期刊文献+
共找到6,010篇文章
< 1 2 250 >
每页显示 20 50 100
基于栈式自编码器和Softmax分类器的电力变压器故障诊断 被引量:9
1
作者 张玉振 吉兴全 +2 位作者 彭立岩 梁晓平 许倩文 《中国科技论文》 CAS 北大核心 2018年第23期2694-2699,共6页
为更加有效地解决电力变压器故障诊断时面临的数据提取、局部最优、梯度消散等问题,提出了一种基于栈式自编码器(stacked auto-encoders,SAE)与Softmax分类器的电力变压器故障诊断新方法。所提方法首先基于SAE与Softmax分类器理论,建立... 为更加有效地解决电力变压器故障诊断时面临的数据提取、局部最优、梯度消散等问题,提出了一种基于栈式自编码器(stacked auto-encoders,SAE)与Softmax分类器的电力变压器故障诊断新方法。所提方法首先基于SAE与Softmax分类器理论,建立电力变压器故障诊断模型;然后基于k步对比散度算法,利用大量无标签样本对故障诊断模型中的每个受限玻尔兹曼机(restricted Boltzmann machine,RBM)进行逐层无监督训练,并使用有监督算法对模型参数进行调优;最后结合Softmax分类器对故障类型进行判断。算例分析证明,与基于支持向量机(support vector machine,SVM)和反向传播神经网络算法的故障诊断方法相比,所提方法在电力变压器评估方面具有较好的稳定性及更高的准确率。 展开更多
关键词 高电压与绝缘技术 电力变压器 故障诊断 栈式自编码器 softmax分类器 反向传播神经网络
在线阅读 下载PDF
基于Softmax分类器的小春作物种植空间信息提取 被引量:11
2
作者 蒋怡 黄平 +4 位作者 董秀春 李宗南 王昕 魏来 邱金春 《西南农业学报》 CSCD 北大核心 2019年第8期1880-1885,F0003,共7页
[目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨... [目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨率影像,结合地面调查数据,建立油菜、小麦、林地、居民地、水体等典型地物感兴趣区,训练Softmax分类器,基于不同空间分辨率影像提取油菜、小麦种植空间信息。[结果]①基于Softmax分类器和10 m分辨率融合影像的小春作物分类总体精度为90.02%,Kappa系数为0.8344,其中油菜生产者精度和用户精度分别为93.14%、91.42%,小麦的分别为87.93%,98.09%;②Softmax法的小春作物分类精度随影像空间分辨率下降而降低,15、20、30 m分辨率影像的分类精度较10 m的分别下降9.80%、12.04%和13.04%,Kappa系数依次减少0.1538,0.1873和0.2088;③15、20、30 m分辨率影像的油菜分类精度较小麦的低,影响因素为油菜花期和种植地块破碎分散。[结论]Softmax分类器在10~30 m中高分辨率影像小春作物分类中具备较高的精度,可作为常规方法应用于业务化的作物监测工作。 展开更多
关键词 小春作物 softmax 机器学习 空间分辨率 分类精度
在线阅读 下载PDF
基于深度神经网络和SoftMax分类器的台区负荷分类识别方法 被引量:13
3
作者 徐嘉杰 卢兆军 +1 位作者 袁飞 陈光宇 《电气自动化》 2021年第6期102-104,114,共4页
随着传统分类分析算法研究的不断深入,台区用电负荷模式的分类识别也在不断发展。提出了一种基于深度神经网络(deep neural networks,DNN)和SoftMax分类器的台区负荷分类识别方法,结合已有的典型负荷曲线特征库,实现对台区未知用户的负... 随着传统分类分析算法研究的不断深入,台区用电负荷模式的分类识别也在不断发展。提出了一种基于深度神经网络(deep neural networks,DNN)和SoftMax分类器的台区负荷分类识别方法,结合已有的典型负荷曲线特征库,实现对台区未知用户的负荷预测,为电网部门需求侧管理提供可靠的支撑。对某台区1200个用户负荷数据进行实证分析,结果表明,提出的分类方法在算法收敛性、计算时间以及预测精度等方面具有更好的性能。 展开更多
关键词 深度神经网络 softmax分类器 台区负荷分类 负荷预测 需求侧管理
在线阅读 下载PDF
基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法研究
4
作者 陈俊熹 周希文 《江西交通科技》 2023年第2期77-81,共5页
为了提高路面裂缝识别的正确率和实时性,文章提出了一种基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法。利用图像处理算法从每张路面图像中提取低维特征,输入到稀疏自编码器进行特征优化并提取高维特征后,使用Softmax分类器... 为了提高路面裂缝识别的正确率和实时性,文章提出了一种基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法。利用图像处理算法从每张路面图像中提取低维特征,输入到稀疏自编码器进行特征优化并提取高维特征后,使用Softmax分类器来进行识别。利用本文方法进行交叉试验,准确率、精度、灵敏度、特异性和F1-score分别达到99.5%、99%、100%、100%和99.5%。因此,本文提出的方法能够有效地自动检测路面裂缝。 展开更多
关键词 路面裂缝识别 图像处理 深度学习 堆叠稀疏自编码器 softmax分类器
在线阅读 下载PDF
基于哈希桶的快速三支决策邻域分类器
5
作者 贾润亮 张海玉 《小型微型计算机系统》 北大核心 2025年第4期776-782,共7页
三支决策邻域分类器作为邻域粗糙集的重要扩展,目前已成为数据挖掘中一种有效的分类方法.然而,三支决策邻域分类器当前仍存在两方面的局限,一是获得测试样本邻域类的计算复杂度较高,二是测试样本对于多个最大决策类场景无法确定最终的... 三支决策邻域分类器作为邻域粗糙集的重要扩展,目前已成为数据挖掘中一种有效的分类方法.然而,三支决策邻域分类器当前仍存在两方面的局限,一是获得测试样本邻域类的计算复杂度较高,二是测试样本对于多个最大决策类场景无法确定最终的类别标签,为了解决此问题,本文提出一种基于哈希桶方法的快速三支决策邻域分类器.首先,对分类训练集通过哈希规则将样本对象映射到对应的哈希桶中,通过哈希桶实现了邻域的搜索范围被限制在对象所属桶和相邻两个桶中;然后,为了避免测试样本针对多个最大决策类存在类别无法判定的情况,定义一种平均距离度来描述对象与决策类之间的距离程度,在多数投票规则基础上结合平均距离度,实现了测试对象对最大决策类的识别能力;最后,综合快速邻域类计算和平均距离度,建立了基于哈希桶的快速三支决策邻域分类器模型.实验结果表明了所提出的分类器具有较好的分类性能和分类效率. 展开更多
关键词 邻域粗糙集 邻域分类器 哈希桶 三支决策 平均距离度
在线阅读 下载PDF
基于拓扑感知和双视图分类器的旋转机械故障诊断方法
6
作者 陈子旭 余文念 +1 位作者 杜伟涛 林正宇 《振动与冲击》 北大核心 2025年第1期151-162,共12页
针对旋转机械不同工况下数据分布不同,以及故障数据稀缺使得样本类别不均衡,导致故障诊断模型性能退化这一问题,提出一种基于拓扑感知和双视图分类器的故障诊断方法。该方法以一个图卷积网络为诊断框架,提出的非参数化拓扑感知模块能自... 针对旋转机械不同工况下数据分布不同,以及故障数据稀缺使得样本类别不均衡,导致故障诊断模型性能退化这一问题,提出一种基于拓扑感知和双视图分类器的故障诊断方法。该方法以一个图卷积网络为诊断框架,提出的非参数化拓扑感知模块能自适应更新图数据拓扑结构,约束不同域数据获取近似的消息传递路径,通过图卷积网络有效提取域一致故障特征;利用二分类器和多分类器构建双视图分类器,并计算二元输出和多元输出的相似度对训练数据进行重加权,避免了类别不均衡下模型的有偏训练以及对少数类样本识别能力不强的现象。利用公开的西安交通大学齿轮故障数据集、MAFAULDA旋转机械故障数据集及自制的滑动轴承故障模拟数据进行试验。结果表明,提出的方法能有效提升类别不均衡下变工况故障诊断的性能。 展开更多
关键词 拓扑感知 双视图分类器 类别不均衡 变工况 故障诊断
在线阅读 下载PDF
基于EMAPs的高光谱遥感多分类器集成算法
7
作者 虞瑶 沈泉飞 吴越 《测绘与空间地理信息》 2025年第2期170-173,共4页
针对提升高光谱遥感影像的分类表现,提出了基于EMAPs的高光谱遥感多分类器集成算法。该算法首先提取扩展多属性剖面(EMAPs)特征,然后选取极限学习机、协同表示分类器和支持向量机作为基分类器,基于提取的EMAPs特征参与集成分类。选取Pur... 针对提升高光谱遥感影像的分类表现,提出了基于EMAPs的高光谱遥感多分类器集成算法。该算法首先提取扩展多属性剖面(EMAPs)特征,然后选取极限学习机、协同表示分类器和支持向量机作为基分类器,基于提取的EMAPs特征参与集成分类。选取Purdue Campus和Indian Pines两组实验数据分析评价所提出算法的有效性,结果表明,与单分类器相比,基于EMAPs的多分类器集成算法可以取得更优异的分类表现。 展开更多
关键词 EMAPs 极限学习机 协同表示分类器 支持向量机 高光谱影像分类
在线阅读 下载PDF
基于无人机影像和分类器集成的土地使用类型自动识别研究
8
作者 周丹 《城市勘测》 2025年第1期33-37,共5页
为提升土地使用类型自动识别性能,研究基于无人机影像和分类器集成的土地使用类型自动识别方法,使土地使用类型识别精确度更高。利用SLA-4800型号无人机采集城市土地区域无人机影像,以土地全区域涵盖以及乡镇集合等准则为基础,构建土地... 为提升土地使用类型自动识别性能,研究基于无人机影像和分类器集成的土地使用类型自动识别方法,使土地使用类型识别精确度更高。利用SLA-4800型号无人机采集城市土地区域无人机影像,以土地全区域涵盖以及乡镇集合等准则为基础,构建土地使用类型自动识别标准,对无人机采集的土地无人机影像进行零均值化以及影像增强处理,实现土地无人机影像预处理,通过采用自动编码机与深度空谱特征联合算法,对预处理后的土地无人机影像进行特征提取,构建以SVM分类器、C4.5决策树分类器以及深度学习分类器组成的集成分类器,最终利用投票辨识实现土地使用类型自动识别。实验表明:该方法处理后土地遥感图像更加清晰,可实现土地使用类型自动识别,且具备较高的识别Kappa系数,有效助力城市各行业的土地配置。 展开更多
关键词 无人机影像 分类器集成 土地使用类型 自动识别 零均值化 SVM分类器
在线阅读 下载PDF
基于机器视觉与SVM分类器的啤酒瓶盖质量检测
9
作者 张航 《自动化应用》 2025年第6期9-11,共3页
传统的质量检测方式存在效率低下、速度慢、劳动强度大且检测精度不稳定等问题,难以满足现代啤酒生产对高速、高效、高质量的需求,因此,现提出基于机器视觉与SVM分类器的啤酒瓶盖质量检测。首先,基于机器视觉采集图像,并运用图像处理技... 传统的质量检测方式存在效率低下、速度慢、劳动强度大且检测精度不稳定等问题,难以满足现代啤酒生产对高速、高效、高质量的需求,因此,现提出基于机器视觉与SVM分类器的啤酒瓶盖质量检测。首先,基于机器视觉采集图像,并运用图像处理技术来减少或控制图像中的噪声。其次,根据面积、周长、填充率及圆形度等特征提取啤酒瓶盖表面特征信息。最后,基于SVM分类器识别瓶盖缺陷,实现对瓶盖质量的有效检测。实验结果表明,基于机器视觉与SVM分类器的啤酒瓶盖质量检测方法具有较高的质量检测准确率和较快的检测速度,能够有效地识别出瓶盖上的各种缺陷。 展开更多
关键词 质量检测 啤酒瓶盖 图像处理 SVM分类器 机器视觉
在线阅读 下载PDF
基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法 被引量:32
10
作者 梁敏健 崔啸宇 +1 位作者 宋青松 赵祥模 《交通运输工程学报》 EI CSCD 北大核心 2017年第3期151-158,共8页
为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG... 为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG和Gabor特征向量直接串联,得到刻画交通标志的融合特征向量,采用Softmax分类器对融合特征向量进行分类,采用德国交通标志识别基准(GTSRB)数据库测试了所提方法的有效性,比较了基于单特征与融合特征的交通标志识别效果。试验结果表明:在图像增强过程中,针对HOG特征,采用Gamma矫正方法的分类正确率最大,为97.11%,针对Gabor特征,采用限制对比度的直方图均衡化方法的分类正确率最大,为97.54%;采用Softmax分类器的最小分类正确率为97.11%,耗时小于2s;针对HOG-Gabor融合特征,采Softmax分类器的识别率高达97.68%,因此,基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法的识别率高,实时性强。 展开更多
关键词 交通信息工程 智能车 交通标志识别 特征提取 softmax分类 特征融合
原文传递
基于成果导向教育的分类器实验教学设计探索 被引量:1
11
作者 昝风彪 陈达 +1 位作者 刘昕 孟轩 《实验室研究与探索》 CAS 北大核心 2024年第1期165-168,共4页
探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习... 探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习效率。通过此互动式、开放性的课堂教学,不仅充分激发了每一个学生的学习能动性,也使得教师通过课堂氛围灵活的分配教学计划以获得更好的教学体验,更好地完成教学成绩。 展开更多
关键词 PYTHON 分类器 成果导向教育 人才培养
在线阅读 下载PDF
Softmax分类器深度学习图像分类方法应用综述 被引量:63
12
作者 万磊 佟鑫 +2 位作者 盛明伟 秦洪德 唐松奇 《导航与控制》 2019年第6期1-9,47,共10页
基于深度学习的人工智能图像分类方法研究是当前计算机视觉领域的研究热点。面向深度学习中的Softmax图像分类方法,首先回顾了图像分类技术的发展历程,接着介绍了图像识别技术中的分类器,并解释了Softmax回归函数的分类实现原理。基于So... 基于深度学习的人工智能图像分类方法研究是当前计算机视觉领域的研究热点。面向深度学习中的Softmax图像分类方法,首先回顾了图像分类技术的发展历程,接着介绍了图像识别技术中的分类器,并解释了Softmax回归函数的分类实现原理。基于Softmax回归分类器的应用,详细阐述了多种图像分类技术,具体包括浅层神经网络、深度置信网络、深度自编码器和卷积神经网络。同时,对比介绍了各种级联模型的具体结构、训练方法、实际应用、分类效果以及优缺点。最后,从Softmax回归分类器、深度学习网络模型和高维数据分类三个方面对基于Softmax回归分类器的深度学习模型在图像分类方面的发展与应用前景进行了展望。 展开更多
关键词 图像分类 深度学习 softmax回归 网络模型 分类器
原文传递
基于同伴辅助学习分类器的部分域自适应方法 被引量:1
13
作者 邱春红 邵晓根 《计算机应用与软件》 北大核心 2024年第1期168-176,共9页
为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入... 为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入一种同伴辅助学习方法,减轻特定目标学习分类器的过度拟合问题。在三个数据集上的实验结果证明该方法不仅减轻了负迁移,而且解决了分类器移位问题。 展开更多
关键词 部分域自适应 负转移 分类器 同伴辅助学习
在线阅读 下载PDF
基于ER Rule的多分类器汽车评论情感分类研究 被引量:1
14
作者 周谧 周雅婧 +1 位作者 贺洋 方必和 《运筹与管理》 CSSCI CSCD 北大核心 2024年第5期161-168,共8页
该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同... 该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同分类器进行文本情感极性分析,并考虑各分类器的权重和可靠度。最后,爬取汽车网站上的评论数据对上述方法进行测试,并用公开的中文酒店评论语料数据进行了验证,结果表明该方法能够有效集成不同分类器的优点,与传统机器学习分类算法相比,其结果在Recall,F1值和Accuracy三个指标上得到了提高,与目前流行的深度学习算法和集成学习算法相比,其结果总体占优。 展开更多
关键词 证据推理规则 分类器融合 TFIDF权重 深度学习算法 集成学习算法
在线阅读 下载PDF
基于多层感知分类器的皮革图像缺陷识别研究 被引量:1
15
作者 马静 《中国皮革》 CAS 2024年第8期40-46,共7页
针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一... 针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一个基于改进多层感知分类器的皮革图像缺陷识别模型;最后,提出一套皮革缺陷图像数据集构建方案,通过滑窗裁剪、样本标注、图像增广等获得4类皮革缺陷图像样本,并将该数据集输入至搭建缺陷识别模型中进行缺陷识别。试验结果表明,本模型对孔洞缺陷、划痕缺陷、针眼缺陷和无缺陷4种故障样本的平均精确率、召回率、准确率和F1值分别为96.97%、96.52%、94.99%和96.14,且本模型进行缺陷识别所用时长仅为3.56 s。相较于经典卷积神经网络VGG16、残差网络ResNet10和支持向量机SVM,本模型对皮革图像不同样本的故障识别准确率更高,识别时间更短。由此说明,本模型能够提升皮革图像缺陷识别准确率和效率,模型性能具备优越性和有效性。 展开更多
关键词 多层感知分类器 皮革图像 图像增广 权值与偏置更新 缺陷识别
在线阅读 下载PDF
引入激活扩散的类分布关系近邻分类器
16
作者 董飒 欧阳若川 +4 位作者 徐海啸 刘杰 刘大有 李婷婷 王鑫禄 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期915-922,共8页
针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同... 针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同质性,从而降低分类错误率.对比实验结果表明,该方法扩大了待分类节点的邻域,在网络数据上分类精度较好. 展开更多
关键词 人工智能 网络数据分类 激活扩散 类分布关系近邻分类器 协作推理
在线阅读 下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
17
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器 集成学习
在线阅读 下载PDF
一种基于多分类器和证据理论融合的水质分类方法
18
作者 项新建 颜超龙 +2 位作者 费正顺 郑永平 李可晗 《人民黄河》 CAS 北大核心 2024年第1期109-113,共5页
针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函... 针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函数,基于证据理论对信度函数进行融合,获得多分类器融合模型。从国家地表水水质自动站发布的2022年3月1—22日水质数据中选取3 558条数据为样本集,采用DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型和多分类器融合模型对待测样本进行测试。结果表明:多分类器融合模型对水质类别判定的平均准确率、精确率、召回率和F1值分别为94.2%、93.8%、94.2%和94.0%。相较于DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型,多分类器融合模型准确率分别提高5.6%、9.8%和13.6%,精确率分别提高5.2%、10.0%和10.9%,召回率分别提高5.6%、9.8%和13.6%,F1值分别提高5.4%、10.2%和12.3%,多分类器融合模型在水质分类方面的准确性和适应性更高。 展开更多
关键词 水质分类 分类器 神经网络 证据理论融合
在线阅读 下载PDF
基于极化SAR梯度和复Wishart分类器的舰船检测
19
作者 殷君君 罗嘉豪 +2 位作者 李响 代晓康 杨健 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期396-410,共15页
舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标... 舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标,从而造成漏检。针对这些问题,该文提出一种基于极化SAR梯度和复Wishart分类器的舰船检测方法。首先,将似然比检验(LRT)梯度引入对数比值梯度框架,使其适用于极化SAR数据;基于LRT梯度图进行恒虚警(CFAR)检测,提取舰船的边缘信息,消除伪影的同时抑制强旁瓣对舰船精细轮廓提取的影响。其次,利用复Wishart迭代分类器对舰船强散射部分进行检测,可排除大部分的杂波干扰且保持舰船形态细节。最后,将二者信息融合,从而可以保持舰船形态细节的同时克服旁瓣和伪信号的虚警。该文在3幅来自ALOS-2卫星的极化SAR图像上进行了对比实验,实验表明与其他方法相比,该文所提算法具有更少的虚警和漏检,且能够有效克服旁瓣泄露,保持舰船形态细节。 展开更多
关键词 舰船检测 极化合成孔径雷达 比值梯度 似然比检验 复Wishart分类器
在线阅读 下载PDF
高阶Takagi-Sugeno-Kang模糊知识蒸馏分类器及其在脑电信号分类中的应用
20
作者 蒋云良 印泽宗 +2 位作者 张雄涛 申情 李华 《智能系统学报》 CSCD 北大核心 2024年第6期1419-1427,共9页
在脑电信号(electro encephalo gram,EEG)的分类检测任务中,低阶TSK(Takagi-Sugeno-Kang)模糊分类器的学习速度较快,但性能表现不理想,高阶TSK模糊分类器虽然具有较强的性能优势,但极其复杂的模糊规则后件严重影响模型的运行速度。为此... 在脑电信号(electro encephalo gram,EEG)的分类检测任务中,低阶TSK(Takagi-Sugeno-Kang)模糊分类器的学习速度较快,但性能表现不理想,高阶TSK模糊分类器虽然具有较强的性能优势,但极其复杂的模糊规则后件严重影响模型的运行速度。为此,提出一种基于负欧氏概率和高阶模糊隐藏知识迁移的新型TSK模糊蒸馏分类器(solved TSK-least learning machine-knowledge distillation classifier,STSK-LLM-KD)。首先,利用所提出的基于知识蒸馏的最小学习机(LLM-KD)对教师模型的后件参数进行快速求解并得到相应的负欧氏概率用于生成软标签;然后,通过计算软标签之间的Kullback-Leible散度提取教师模型的高阶模糊隐藏知识并迁移至低阶学生模型中,使模型性能优于高阶TSK模糊分类器的同时保持更快的训练速度。在运动想象脑电数据集和新德里HauzKhas癫痫脑电数据集上的实验结果充分验证了STSK-LLM-KD的优势,STSK-LLM-KD相较于其他模糊分类器表现更加优异,与深度知识蒸馏模型相比,STSK-LLM-KD能够更好地提升学生模型的性能。 展开更多
关键词 TSK模糊分类器 知识蒸馏 高阶模糊隐藏知识 脑电信号 最小学习机 癫痫 运动想象 模糊系统
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部