The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel ...This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel fast-axis collimated blue semiconductor laser as the pump source,combined with a folded cavity and innovation coating technology,and utilizing a Brewster-cut BBO crystal for intracavity frequency doubling,TEM00 mode deep UV laser radiation at 275 nm with an output power of 351 mW is obtained.This marks the first report of achieving 275 nm laser generation based on Pr:LiYF4 to date.展开更多
BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological ...BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.展开更多
In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, t...In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.展开更多
The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the ...The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the (G~/G)-expansion method, we gain some new solutions.展开更多
Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharm...Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.展开更多
Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from ...Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from foreign eggs by the hosts.In turn,for parasitic females it may be bene cial to lay eggs into host clutches where eggs more closely match the parasite's own eggs.While the visual sensitivities of numerous cuckoo-and cowbird-host species have been described,less is known about those of their respective parasites.Such sensory characterization is important for understanding the mechanisms underlying potential perceptual coevolutionary processes between hosts and parasites,as well as for better understanding each species' respective visual sensory ecology.We sequenced the short wavelength-sensitive type 1(SWS1) opsin gene to predict the degree of UVsensitivity in both of New Zealand's obligate parasitic cuckoo species,the Shining Cuckoo(Chalcites [Chrysococcyx] lucidus) and the Long-tailed Cuckoo(Urodynamis [Eudynamis] taitensis).We show that both species are predicted to possess SWS1 opsins with maximal sensitivity in the human-visible violet portion of the short-wavelength light spectrum,and not in the UV.Future studies should focus on the(mis)matching in host-parasite visual sensitivities with respect to host-parasite egg similarity as perceived by the avian visual system and the behavioral outcomes of foreign egg rejection.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are anal...In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.展开更多
The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-w...The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-wave component of sHmax is expressed by the absolute direction of plate motions, we can get the relative orientation and the magnitude of the short-wave component resulted from the local tectonic process or other factors with vector analytical technique. The global surface was divided into basic element bins by 2.52.5 dimensions and the WSM indicators were statistically analyzed for each element by weight coefficient method in order to determine the mean orientation of the stress. We calculated the long-wave component of the global stress field using HS2-NUVEL1 model. The relative magnitude or the direction limitation of short-wave component, which reflect the local contribution to the observed stresses, was determined by the angle between the mean sHmax and the orien-tation of the long-wave component. The results of this paper show that the contribution of either the long-wave component or the short-wave component is approximately equal to most of the global plates on the basis of the mean effect of the observed stresses. For some of continental regions, the local active tectonics plays an important role in the observed stresses and controls the generation and occurrence of earthquakes.展开更多
The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlor...The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.展开更多
The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric...The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric channels,the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier.However,the underwater transmission of this pulses tends to suffer from severe attenuation,which inevitably deteriorates the security of the whole CVQKD system.In this paper,we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels.We estimate the parameters of the trans-media channels,involving atmosphere,sea surface and seawater and find that the shortwave infrared performs well in the above channels.The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere,sea surface and seawater channels.Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km.In addition,we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance,which contributes to the establishment of practical global quantum networks.展开更多
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee...Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
In the era of Internet of Things(Io Ts),an energy-efficient ultraviolet(UV)photodetector(PD)is highly desirable considering the massive usage scenarios such as environmental sterilization,fire alarm and corona dischar...In the era of Internet of Things(Io Ts),an energy-efficient ultraviolet(UV)photodetector(PD)is highly desirable considering the massive usage scenarios such as environmental sterilization,fire alarm and corona discharge monitoring.So far,common self-powered UV PDs are mainly based on metal-semiconductor heterostructures or p–n heterojunctions,where the limited intrinsic built-in electric field restricts further enhancement of the photoresponsivity.In this work,an extremely low-voltage field-effect UV PD is proposed using a gatedrain shorted amorphous IGZO(a-IGZO)thin film transistor(TFT)architecture.A combined investigation of the experimental measurements and technology computer-aided design(TCAD)simulations suggests that the reverse current(ⅠR)of field-effect diode(FED)is highly related with the threshold voltage(Vth)of the parental TFT,implying an enhancement-mode TFT is preferable to fabricate the field-effect UV PD with low dark current.Driven by a low bias of-0.1 V,decent UV response has been realized including large UV/visible(R_(300)/R_(550))rejection ratio(1.9×10^(3)),low dark current(1.15×10^(-12)A)as well as high photo-to-dark current ratio(PDCR,~10^(3))and responsivity(1.89 A/W).This field-effect photodiode provides a new platform to construct UV PDs with well-balanced photoresponse performance at a low bias,which is attractive for designs of large-scale smart sensor networks with high energy efficiency.展开更多
Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with human...Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.展开更多
Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spec...Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).展开更多
A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength c...A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.展开更多
The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surf...The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion.展开更多
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
文摘This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel fast-axis collimated blue semiconductor laser as the pump source,combined with a folded cavity and innovation coating technology,and utilizing a Brewster-cut BBO crystal for intracavity frequency doubling,TEM00 mode deep UV laser radiation at 275 nm with an output power of 351 mW is obtained.This marks the first report of achieving 275 nm laser generation based on Pr:LiYF4 to date.
基金Supported by Beijing Ditan Hospital Affiliated to Capital Medical University“Sailing Plan”,No.DTQH-202405.
文摘BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402400)the National Natural Science Foundation of China(Grant Nos.61675225,61605232,and 61775228)the Shanghai Rising-Star Program,China(Grant No.17QA1404900)
文摘In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.
基金Project supported by the Scientific Research Fund of Education Department of Heilongjiang Province of China (Grant No.12531475)
文摘The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the (G~/G)-expansion method, we gain some new solutions.
基金Supported by the Talented Young Pressional Foundation of Jilin Province(No 2005123)
文摘Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.
基金funded by the US National Science Foundation and the Graduate Center of the City University of New York (to ZA and to MEH)a Foundation for Research,Science and Technology postdoctoral fellowship (to MGA)the National Geographic Society,the PSC-CUNY grant scheme and the Human Frontier Science Program (to MEH)
文摘Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from foreign eggs by the hosts.In turn,for parasitic females it may be bene cial to lay eggs into host clutches where eggs more closely match the parasite's own eggs.While the visual sensitivities of numerous cuckoo-and cowbird-host species have been described,less is known about those of their respective parasites.Such sensory characterization is important for understanding the mechanisms underlying potential perceptual coevolutionary processes between hosts and parasites,as well as for better understanding each species' respective visual sensory ecology.We sequenced the short wavelength-sensitive type 1(SWS1) opsin gene to predict the degree of UVsensitivity in both of New Zealand's obligate parasitic cuckoo species,the Shining Cuckoo(Chalcites [Chrysococcyx] lucidus) and the Long-tailed Cuckoo(Urodynamis [Eudynamis] taitensis).We show that both species are predicted to possess SWS1 opsins with maximal sensitivity in the human-visible violet portion of the short-wavelength light spectrum,and not in the UV.Future studies should focus on the(mis)matching in host-parasite visual sensitivities with respect to host-parasite egg similarity as perceived by the avian visual system and the behavioral outcomes of foreign egg rejection.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金Project supported by the Foundation of Guangxi Key Laboratory of Trusted Software, the Guangxi Natural Science Foundation, China (Grant No. 2011GXNSFA018134)the National Natural Science Foundation of China (Grant Nos. 11161013 and 61004101)
文摘In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.
基金MOST contract of 2001BA601B02 and State Natural Science Foundation of China (49804006).
文摘The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-wave component of sHmax is expressed by the absolute direction of plate motions, we can get the relative orientation and the magnitude of the short-wave component resulted from the local tectonic process or other factors with vector analytical technique. The global surface was divided into basic element bins by 2.52.5 dimensions and the WSM indicators were statistically analyzed for each element by weight coefficient method in order to determine the mean orientation of the stress. We calculated the long-wave component of the global stress field using HS2-NUVEL1 model. The relative magnitude or the direction limitation of short-wave component, which reflect the local contribution to the observed stresses, was determined by the angle between the mean sHmax and the orien-tation of the long-wave component. The results of this paper show that the contribution of either the long-wave component or the short-wave component is approximately equal to most of the global plates on the basis of the mean effect of the observed stresses. For some of continental regions, the local active tectonics plays an important role in the observed stresses and controls the generation and occurrence of earthquakes.
基金funded by Science and Technology Project of Tibet Autonomous Region(Grant Nos.XZ201801-GB-01XZ202102YD0024C)+2 种基金The Second Round of Comprehensive Investigation and Research on the Qinghai-Tibet Plateau(Grant No.2019QZKK0806)National Natural Science Foundation of China(Grant No.42002097)Demonstration Research on Alteration Mapping using Short-wave Infrared and Thermal Infrared Hyperspectral Technologies(Grant No.KK2102)。
文摘The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101180 and 61871407)the Key R&D Program of Hunan Province(Grant No.2022GK2016)+1 种基金the State Key Laboratory of High Performance Computing,National University of Defense Technology(Grant No.202101-25)the Fundamental Research Funds for the Central Universities(Grant No.531118010371)。
文摘The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric channels,the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier.However,the underwater transmission of this pulses tends to suffer from severe attenuation,which inevitably deteriorates the security of the whole CVQKD system.In this paper,we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels.We estimate the parameters of the trans-media channels,involving atmosphere,sea surface and seawater and find that the shortwave infrared performs well in the above channels.The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere,sea surface and seawater channels.Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km.In addition,we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance,which contributes to the establishment of practical global quantum networks.
基金the National Natural Science Foundation of China(No.51973080,92066104).
文摘Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金supported by the National Natural Science Foundation of China(Grant Nos.62174113,12174275,and 61874139)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2019B1515120057,2023A1515140094,and 2023A1515110730)。
文摘In the era of Internet of Things(Io Ts),an energy-efficient ultraviolet(UV)photodetector(PD)is highly desirable considering the massive usage scenarios such as environmental sterilization,fire alarm and corona discharge monitoring.So far,common self-powered UV PDs are mainly based on metal-semiconductor heterostructures or p–n heterojunctions,where the limited intrinsic built-in electric field restricts further enhancement of the photoresponsivity.In this work,an extremely low-voltage field-effect UV PD is proposed using a gatedrain shorted amorphous IGZO(a-IGZO)thin film transistor(TFT)architecture.A combined investigation of the experimental measurements and technology computer-aided design(TCAD)simulations suggests that the reverse current(ⅠR)of field-effect diode(FED)is highly related with the threshold voltage(Vth)of the parental TFT,implying an enhancement-mode TFT is preferable to fabricate the field-effect UV PD with low dark current.Driven by a low bias of-0.1 V,decent UV response has been realized including large UV/visible(R_(300)/R_(550))rejection ratio(1.9×10^(3)),low dark current(1.15×10^(-12)A)as well as high photo-to-dark current ratio(PDCR,~10^(3))and responsivity(1.89 A/W).This field-effect photodiode provides a new platform to construct UV PDs with well-balanced photoresponse performance at a low bias,which is attractive for designs of large-scale smart sensor networks with high energy efficiency.
文摘Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.
基金Funded by the National Natural Science Foundation of China(Nos.51872214 and 52172124)the Fundamental Research Funds for the Central Universities(WUT:2021Ⅲ019JC and 2018Ⅲ041GX)。
文摘Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).
基金partially supported by National Natural Science Foundation of China(Nos.U23A2077,12175278,12205072)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE0304002,2018YFE0303103)+2 种基金the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021)the University Synergy Innovation Program of Anhui Province(No.GXXT2021-029)。
文摘A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515012146)the National Natural Science Foundation of China(No.52271083)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.22qntd0801)the Shanghai Engineering Technology Research Centre of Deep Offshore Material,China(No.19DZ2253100)。
文摘The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion.