Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous sys...Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg.bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg.bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.展开更多
In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice ...In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice from each strain were housed in an enriched environment(including a platform,running wheels,tunnel,and some toys)or a standard environment for 3 months.The mice housed in the enriched environment exhibited shorter escape latencies and a greater percentage of time in the target quadrant in the Morris water maze test,and they exhibited reduced errors and longer latencies in step-down avoidance experiments compared with mice housed in the standard environment.Correspondently,brain-derived neurotrophic factor mRNA and protein ex- pression in the hippocampus was significantly higher in mice housed in the enriched environment compared with those housed in the standard environment,and the level of hippocampal brain-derived neurotrophic factor protein was positively correlated with the learning and memory abilities of mice from the senescence-accelerated prone mouse 8 strain.These results suggest that an enriched environment improved cognitive performance in mice form the senescence-accelerated prone mouse 8 strain by increasing brain-derived neurotrophic factor expression in the hippocampus.展开更多
OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and iden...OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and identify the specific intestinal microbiota correlating with cognitive ability.METHODS Morris-water maze test,novel object recognition test and shuttle-box test were conducted to observe the ability of learning and memory.16S rRNA amplicon sequencing(Illumina,San Diego,CA,USA)was employed to investigate gut microbiota.RESULTS The treatment of LW-AFC improved cognitive impairments of SAMP8 mice,including spatial learning and memory ability,active avoidance response,and object recognition memory capability.Our data indicated that there were significantly 8 increased and 12 decreased operational taxonomic units(OTUs)in the gut microbiota of SAMP8 mice compared with senescence accelerated mouse resistant 1(SAMR1) strains,the control of SAMP8 mice.The treatment of LW-AFC altered 22(16 increased and 6 decreased)OTUs in SAMP8 mice and among them,15 OTUs could be reversed by LW-AFC treatment resulting in a microbial composition similar to that of SAMR1 mice.We further showed that there were7(3 negative and 4 positive correlation)OTUs significantly correlated with all the three types of cognitive abilities,at the order level,including Bacteroidales,Clostridiales,Desulfovibrionales,CW040,and two unclassified orders.LW-AFC had influences on bacterial taxa correlated with the abilities of learning and memory in SAMP8 mice and restored them to SAMR1 mice.CONCLUSION The effects of LW-AFC on improving cognitive impairments of SAMP8 mice might be via modulating intestinal microbiome and LW-AFC could be used as a potential anti-AD agent.展开更多
Background: To explore the influence of age-related changes in learning and memory capacity of SAMP10, an Alzheimer's disease (AD) model mice, and provide theoretical foundation for the selection of month age in r...Background: To explore the influence of age-related changes in learning and memory capacity of SAMP10, an Alzheimer's disease (AD) model mice, and provide theoretical foundation for the selection of month age in related experiment. Methods: SAMP10 female mice with the age of 3, 6 and 9 months were used as the objects of experiment, while the age-matched female SAMR1 were used as the controls, with 12 in each group. The learning memory capacity of mice at different age was detected through Morris water maze and step-down passive avoidance test;meanwhile, the acetylcholine, acetylcholinesterase, choline acetyltransferase, and M-cholinergic receptor binding capacity levels were determined to detect the cholinergic system damage degree in mice with different month age. In addition, the contents of monoamine neurotransmitters such as dopamine, 3,4-dihydroxyphenyl acetic acid, homovanillic acid, norepinephrine and 5-HT, as well as those of amino acid transmitters such as glutamic acid, glutamine, aspartic acid,γ-aminobutyric acid, taurine and glycine in the brain cortex were detected by high performance liquid chromatography-electrochemical deposition. Besides, changes in hippocampal neurons were observed through Nissl staining, and the changes of Aβ in hippocampal CA1 and CA2 regions of SAMP10 were also detected by immunohistochemistry so as to explore the effects of age on the memory capacity of SAMP10. Results: It was discovered in the behavior test and AD-related index tests that: there was no significant difference between the age-matched SAMR1 and the SAMP10 at the age of 3 and 6 months. But the 9-months-old mice suffered remarkable senescence characteristics, including obviously declined learning memory capacity;down-regulated neurotransmitter levels, enzyme activities and amino acid expression;reduced hippocampal neuron number;and increased deposition of hippocampal Aβ protein. Conclusion: It is discovered in this study through behavior tests and AD-related indexs detection that, the learning memory capacity of SAMP10 shows age-dependence, which is gradually decreased with the increase of age, and the 9-months-old mice have developed marked memory impairment and senescence characteristics. SAMP10 is the recognized AD model, the appropriate month age for preventive medication is about 7 months, while that for therapeutic medication is 8-9 months.展开更多
Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8...Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8 and age-matched homologous normal aging mice(SAMR1) were adopted in this study. EA stimulation at Baihui(GV 20) and Yintang(EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis. Amyloid-β(Aβ) expression in hippocampus and parietal cortex was detected by immunohistochemistry, and apoptosis was observed by TUNEL staining. Results: After 3 courses of EA preventive treatment, the escape latencies of 8-month-old SAMP8 mice in EA group were significantly shortened than those of un-pretreated SAMP8 mice. Compared with SAMR1 mice, extensive neuronal changes were visualized in the CA1 area of hippocampus in SAMP8 mice, while these pathological changes and attenuate cell loss in hippocampal CA1 area of SAMP8 mice markedly reduced after EA preventive treatment. Furthermore, Aβ expression in hippocampus and parietal cortex of SAMP8 mice decreased significantly after EA treatment, and neuronal apoptosis decreased as well. Conclusion: EA preventive treatment at GV 20 and EX-HN 3 might improve cognitive deficits and neuropathological changes in SAMP8 mice, which might be, at least in part, due to the effects of reducing brain neuronal damage, decreasing neuronal apoptosis and inhibiting Aβ-containing aggregates.展开更多
Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. T...Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. Therefore, we speculated that the effect of acupuncture on improving cognitive function may be associated with reduced dendritic damage in the brain. Acupuncture at Qihai(CV6), Zhongwan(CV12), Danzhong(CV17), bilateral Zusanli(ST36), and bilateral Xuehai(SP10) acupoints was performed once a day(1-day rest after 6-day treatment) for 14 consecutive days. Senescence-accelerated mouse prone 8(SAMP8) mice without acupuncture and senescence-accelerated mouse resistant 1(SAMR1) mice were used as normal controls. After 14 days of treatment, spatial learning and memory ability of mice was assessed in each group using the Morris water maze. Dendritic changes of pyramidal cells in the hippocampal CA1 region were analyzed by quantitative Golgi staining. Our results showed that acupuncture shortened escape latency and lengthened retention time of the former platform quadrant in SAMP8 mice. Further, SAMP8 mice exhibited a significant increase in the number of apical and basal dendritic branches and total length of apical and basal dendrites after acupuncture. These results suggest that acupuncture improves spatial learning and memory ability of middle-aged SAMP8 mice by ameliorating dendritic structure.Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. Therefore, we speculated that the effect of acupuncture on im- proving cognitive function may be associated with reduced dendritic damage in the brain. Acupuncture at Qihai (CV6), Zhongwan (CV 12), Danzhong (CV17), bilateral Zusanli (ST36), and bilateral Xuehai (SP10) acupoints was performed once a day (1-day rest after 6-day treat- ment) for 14 consecutive days. Senescence-accelerated mouse prone 8 (SAMP8) mice without acupuncture and senescence-accelerated mouse resistant 1 (SAMR1) mice were used as normal controls. After 14 days of treatment, spatial learning and memory ability of mice was assessed in each group using the Morris water maze. Dendritic changes of pyramidal cells in the hippocampal CA1 region were analyzed by quantitative Golgi staining. Our results showed that acupuncture shortened escape latency and lengthened retention time of the former platform quadrant in SAMP8 mice. Further, SAMP8 mice exhibited a significant increase in the number of apical and basal dendritic branches and total length of apical and basal dendrites after acupuncture. These results suggest that acupuncture improves spatial learning and memory ability of middle-aged SAMP8 mice by ameliorating dendritic structure.展开更多
An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43...An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43(GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8(SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that m RNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage.展开更多
Aging increases the risks of various diseases and the vulnerability to death.Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases.This study demonstrates that extrace...Aging increases the risks of various diseases and the vulnerability to death.Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases.This study demonstrates that extracellular vesicles from human urine-derived stem cells(USC-EVs)efficiently inhibit cellular senescence in vitro and in vivo.The intravenous injection of USC-EVs improves cognitive function,increases physical fitness and bone quality,and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice.The anti-aging effects of USC-EVs are not obviously affected by the USC donors’ages,genders,or health status.Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase(PLAU)and tissue inhibitor of metalloproteinases 1(TIMP1).These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases,cyclin-dependent kinase inhibitor 2A(P16INK4a),and cyclin-dependent kinase inhibitor 1A(P21cip1).These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.展开更多
Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the...Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the possible protective mechanism of acupuncture on mitochondria.Methods:Sixty 6-month-old male SAMP8 mice were randomly divided into an acupuncture at acupoint group,an acupuncture at non-acupoint group and a model group,20 mice in each group.The 20 male senescence-accelerated mouse/resistance 1 (SAMR1) mice of the same age were used as a normal control group.Shenshu (BL 23),Baihui (GV 20),Xuehai (SP 10) and Geshu (BL 17) were selected for acupuncture intervention in acupuncture at acupoint group.After an 8-week intervention,mitochondrial tissues were extracted from the hippocampus.Differentially expressed proteins were identified by subcellular organelle proteomics.Western blot was used to verify the expressions of some related proteins in hippocampal mitochondria.Results:Compared with the model group,there were 13 differentially expressed protein spots in the acupuncture at acupoint group,of which,9 were up-regulated,including neurofilament light polypeptide (NFL),actin (cytoplasmic 1,database ID:ACTB),tubulin beta-2A chain (TBB2A),tropomodulin-2 (TMOD2),pyruvate dehydrogenase E1 component subunit beta (PDHE1-β),NADH-ubiquinone oxidoreductase 75 kDa subunit (database ID:NDUS1),heat shock cognate 71 kDa protein (HSC71),pyruvate dehydrogenase E1 component subunit alpha (PDHE1-α) and ATP synthase beta subunit (ATP-β);4 were down-regulated,including glial fibrillary acidic protein (GFAP),pyruvate dehydrogenase phosphatase 1 (PDP1),mitochondrial-processing peptidase subunit alpha (MMP-α) and adenosine kinase (ADK).According to the information provided in the protein database,most of the differentially expressed proteins involve the regulation of mitochondrial function and structure.The expression levels of NFL and TBB2A in the normal control group and the acupuncture at acupoint group were significantly higher than those in the acupuncture at non-acupoint group (P〈0.05).ATP-β and NDUS1 expression levels were significantly higher in the acupuncture at acupoint group than those in the acupuncture at non-acupoint group (P〈0.05);there was no significant difference between the acupuncture at non-acupoint group and the model group (P〉0.05).Conclusion:Acupuncture may achieve the potential therapeutic effect on AD by regulating the structure and functional proteins of hippocampal mitochondria.展开更多
基金supported by the grant of National Natural Science Foundation of Tianjin(09JCYBJC12900)
文摘Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg.bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg.bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.
基金supported by the Program of Health Department of Hebei Province,No.20090338the Natural Science Foundation of Hebei Province,No.C2009001242Funding Project for Introduced Abroad Study Personnel of Hebei Province
文摘In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice from each strain were housed in an enriched environment(including a platform,running wheels,tunnel,and some toys)or a standard environment for 3 months.The mice housed in the enriched environment exhibited shorter escape latencies and a greater percentage of time in the target quadrant in the Morris water maze test,and they exhibited reduced errors and longer latencies in step-down avoidance experiments compared with mice housed in the standard environment.Correspondently,brain-derived neurotrophic factor mRNA and protein ex- pression in the hippocampus was significantly higher in mice housed in the enriched environment compared with those housed in the standard environment,and the level of hippocampal brain-derived neurotrophic factor protein was positively correlated with the learning and memory abilities of mice from the senescence-accelerated prone mouse 8 strain.These results suggest that an enriched environment improved cognitive performance in mice form the senescence-accelerated prone mouse 8 strain by increasing brain-derived neurotrophic factor expression in the hippocampus.
基金supported by National Science and Technology Major Project(2013ZX09508104,2012ZX09301003-002-001)
文摘OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and identify the specific intestinal microbiota correlating with cognitive ability.METHODS Morris-water maze test,novel object recognition test and shuttle-box test were conducted to observe the ability of learning and memory.16S rRNA amplicon sequencing(Illumina,San Diego,CA,USA)was employed to investigate gut microbiota.RESULTS The treatment of LW-AFC improved cognitive impairments of SAMP8 mice,including spatial learning and memory ability,active avoidance response,and object recognition memory capability.Our data indicated that there were significantly 8 increased and 12 decreased operational taxonomic units(OTUs)in the gut microbiota of SAMP8 mice compared with senescence accelerated mouse resistant 1(SAMR1) strains,the control of SAMP8 mice.The treatment of LW-AFC altered 22(16 increased and 6 decreased)OTUs in SAMP8 mice and among them,15 OTUs could be reversed by LW-AFC treatment resulting in a microbial composition similar to that of SAMR1 mice.We further showed that there were7(3 negative and 4 positive correlation)OTUs significantly correlated with all the three types of cognitive abilities,at the order level,including Bacteroidales,Clostridiales,Desulfovibrionales,CW040,and two unclassified orders.LW-AFC had influences on bacterial taxa correlated with the abilities of learning and memory in SAMP8 mice and restored them to SAMR1 mice.CONCLUSION The effects of LW-AFC on improving cognitive impairments of SAMP8 mice might be via modulating intestinal microbiome and LW-AFC could be used as a potential anti-AD agent.
基金the National Natural Science Foundation of China (Grant number:No.81473586,No.81202192).
文摘Background: To explore the influence of age-related changes in learning and memory capacity of SAMP10, an Alzheimer's disease (AD) model mice, and provide theoretical foundation for the selection of month age in related experiment. Methods: SAMP10 female mice with the age of 3, 6 and 9 months were used as the objects of experiment, while the age-matched female SAMR1 were used as the controls, with 12 in each group. The learning memory capacity of mice at different age was detected through Morris water maze and step-down passive avoidance test;meanwhile, the acetylcholine, acetylcholinesterase, choline acetyltransferase, and M-cholinergic receptor binding capacity levels were determined to detect the cholinergic system damage degree in mice with different month age. In addition, the contents of monoamine neurotransmitters such as dopamine, 3,4-dihydroxyphenyl acetic acid, homovanillic acid, norepinephrine and 5-HT, as well as those of amino acid transmitters such as glutamic acid, glutamine, aspartic acid,γ-aminobutyric acid, taurine and glycine in the brain cortex were detected by high performance liquid chromatography-electrochemical deposition. Besides, changes in hippocampal neurons were observed through Nissl staining, and the changes of Aβ in hippocampal CA1 and CA2 regions of SAMP10 were also detected by immunohistochemistry so as to explore the effects of age on the memory capacity of SAMP10. Results: It was discovered in the behavior test and AD-related index tests that: there was no significant difference between the age-matched SAMR1 and the SAMP10 at the age of 3 and 6 months. But the 9-months-old mice suffered remarkable senescence characteristics, including obviously declined learning memory capacity;down-regulated neurotransmitter levels, enzyme activities and amino acid expression;reduced hippocampal neuron number;and increased deposition of hippocampal Aβ protein. Conclusion: It is discovered in this study through behavior tests and AD-related indexs detection that, the learning memory capacity of SAMP10 shows age-dependence, which is gradually decreased with the increase of age, and the 9-months-old mice have developed marked memory impairment and senescence characteristics. SAMP10 is the recognized AD model, the appropriate month age for preventive medication is about 7 months, while that for therapeutic medication is 8-9 months.
基金Supported by the National Natureal Science Foundation of China(No.30701121)
文摘Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8 and age-matched homologous normal aging mice(SAMR1) were adopted in this study. EA stimulation at Baihui(GV 20) and Yintang(EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis. Amyloid-β(Aβ) expression in hippocampus and parietal cortex was detected by immunohistochemistry, and apoptosis was observed by TUNEL staining. Results: After 3 courses of EA preventive treatment, the escape latencies of 8-month-old SAMP8 mice in EA group were significantly shortened than those of un-pretreated SAMP8 mice. Compared with SAMR1 mice, extensive neuronal changes were visualized in the CA1 area of hippocampus in SAMP8 mice, while these pathological changes and attenuate cell loss in hippocampal CA1 area of SAMP8 mice markedly reduced after EA preventive treatment. Furthermore, Aβ expression in hippocampus and parietal cortex of SAMP8 mice decreased significantly after EA treatment, and neuronal apoptosis decreased as well. Conclusion: EA preventive treatment at GV 20 and EX-HN 3 might improve cognitive deficits and neuropathological changes in SAMP8 mice, which might be, at least in part, due to the effects of reducing brain neuronal damage, decreasing neuronal apoptosis and inhibiting Aβ-containing aggregates.
基金supported by the National Natural Science Foundation of China,No.81603686,81603684the High School Science and Technology Fund Planning Project of Tianjin of China,No.20120211+1 种基金the Natural Science Foundation of Tianjin of China(Key Program),No.15JCZDJC36700,16JCZDJC37500the Natural Science Foundation of Tianjin of China,No.17JCYBJC26200
文摘Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. Therefore, we speculated that the effect of acupuncture on improving cognitive function may be associated with reduced dendritic damage in the brain. Acupuncture at Qihai(CV6), Zhongwan(CV12), Danzhong(CV17), bilateral Zusanli(ST36), and bilateral Xuehai(SP10) acupoints was performed once a day(1-day rest after 6-day treatment) for 14 consecutive days. Senescence-accelerated mouse prone 8(SAMP8) mice without acupuncture and senescence-accelerated mouse resistant 1(SAMR1) mice were used as normal controls. After 14 days of treatment, spatial learning and memory ability of mice was assessed in each group using the Morris water maze. Dendritic changes of pyramidal cells in the hippocampal CA1 region were analyzed by quantitative Golgi staining. Our results showed that acupuncture shortened escape latency and lengthened retention time of the former platform quadrant in SAMP8 mice. Further, SAMP8 mice exhibited a significant increase in the number of apical and basal dendritic branches and total length of apical and basal dendrites after acupuncture. These results suggest that acupuncture improves spatial learning and memory ability of middle-aged SAMP8 mice by ameliorating dendritic structure.Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. Therefore, we speculated that the effect of acupuncture on im- proving cognitive function may be associated with reduced dendritic damage in the brain. Acupuncture at Qihai (CV6), Zhongwan (CV 12), Danzhong (CV17), bilateral Zusanli (ST36), and bilateral Xuehai (SP10) acupoints was performed once a day (1-day rest after 6-day treat- ment) for 14 consecutive days. Senescence-accelerated mouse prone 8 (SAMP8) mice without acupuncture and senescence-accelerated mouse resistant 1 (SAMR1) mice were used as normal controls. After 14 days of treatment, spatial learning and memory ability of mice was assessed in each group using the Morris water maze. Dendritic changes of pyramidal cells in the hippocampal CA1 region were analyzed by quantitative Golgi staining. Our results showed that acupuncture shortened escape latency and lengthened retention time of the former platform quadrant in SAMP8 mice. Further, SAMP8 mice exhibited a significant increase in the number of apical and basal dendritic branches and total length of apical and basal dendrites after acupuncture. These results suggest that acupuncture improves spatial learning and memory ability of middle-aged SAMP8 mice by ameliorating dendritic structure.
基金supported by a grant from the Health Department of Hebei Province of China,No.20120056,20140314the Funding Project for Introduced Abroad Study Personnel of Hebei Province of China,No.C2011003039
文摘An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43(GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8(SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that m RNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage.
基金supported by the National Natural Science Foundation of China(Grant Nos.82125023,82072504,81871822,82172501,81801395,and 82200039)the Science and Technology Innovation Program of Hunan Province(Grant Nos.2020RC4008 and 2022RC1211,China)+4 种基金the China National Postdoctoral Program for Innovative Talents(Grant No.BX2021383,China)the Central South University InnovationDriven Research Programme(Grant Nos.2023CXQD001 and 2019CX014,China)the Hunan Province Natural Science Foundation of China(Grant Nos.2023JJ10094 and 2020JJ5883)the Youth Science Foundation of Xiangya Hospital(Grant No.2022Q07,China)the Hunan Provincial Innovation Foundation for Postgraduate(Grant Nos.2021ZZTS0342 and 2022ZZTS0239,China)。
文摘Aging increases the risks of various diseases and the vulnerability to death.Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases.This study demonstrates that extracellular vesicles from human urine-derived stem cells(USC-EVs)efficiently inhibit cellular senescence in vitro and in vivo.The intravenous injection of USC-EVs improves cognitive function,increases physical fitness and bone quality,and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice.The anti-aging effects of USC-EVs are not obviously affected by the USC donors’ages,genders,or health status.Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase(PLAU)and tissue inhibitor of metalloproteinases 1(TIMP1).These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases,cyclin-dependent kinase inhibitor 2A(P16INK4a),and cyclin-dependent kinase inhibitor 1A(P21cip1).These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
文摘Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the possible protective mechanism of acupuncture on mitochondria.Methods:Sixty 6-month-old male SAMP8 mice were randomly divided into an acupuncture at acupoint group,an acupuncture at non-acupoint group and a model group,20 mice in each group.The 20 male senescence-accelerated mouse/resistance 1 (SAMR1) mice of the same age were used as a normal control group.Shenshu (BL 23),Baihui (GV 20),Xuehai (SP 10) and Geshu (BL 17) were selected for acupuncture intervention in acupuncture at acupoint group.After an 8-week intervention,mitochondrial tissues were extracted from the hippocampus.Differentially expressed proteins were identified by subcellular organelle proteomics.Western blot was used to verify the expressions of some related proteins in hippocampal mitochondria.Results:Compared with the model group,there were 13 differentially expressed protein spots in the acupuncture at acupoint group,of which,9 were up-regulated,including neurofilament light polypeptide (NFL),actin (cytoplasmic 1,database ID:ACTB),tubulin beta-2A chain (TBB2A),tropomodulin-2 (TMOD2),pyruvate dehydrogenase E1 component subunit beta (PDHE1-β),NADH-ubiquinone oxidoreductase 75 kDa subunit (database ID:NDUS1),heat shock cognate 71 kDa protein (HSC71),pyruvate dehydrogenase E1 component subunit alpha (PDHE1-α) and ATP synthase beta subunit (ATP-β);4 were down-regulated,including glial fibrillary acidic protein (GFAP),pyruvate dehydrogenase phosphatase 1 (PDP1),mitochondrial-processing peptidase subunit alpha (MMP-α) and adenosine kinase (ADK).According to the information provided in the protein database,most of the differentially expressed proteins involve the regulation of mitochondrial function and structure.The expression levels of NFL and TBB2A in the normal control group and the acupuncture at acupoint group were significantly higher than those in the acupuncture at non-acupoint group (P〈0.05).ATP-β and NDUS1 expression levels were significantly higher in the acupuncture at acupoint group than those in the acupuncture at non-acupoint group (P〈0.05);there was no significant difference between the acupuncture at non-acupoint group and the model group (P〉0.05).Conclusion:Acupuncture may achieve the potential therapeutic effect on AD by regulating the structure and functional proteins of hippocampal mitochondria.