In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family...In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family of vertex operator algebras V_(√kA_(1)) associated to rank-one positive definite even lattices √kA_(1) for arbitrary positive integers k to characterize these even lattice vertex operator algebras.In such a family of lattice vertex operator algebras V_(√kA_(1)),the vertex operator algebra V_(√2A_(1)) is different from others.Hence we describe the varieties of semi-conformal vectors of V_(√2A_(1)) and the fixed vertex operator subalgebra V^(+)√2A_(1).Moreover,as applications,we study the relations between vertex operator algebras V_(√kA_(1) )and L_(sl_(2))(k,0)for arbitrary positive integers k by the viewpoint of semi-conformal homomorphisms of vertex operator algebras.For case k=2,in the series of rational simple affine vertex operator algebras L_(sl_(2))(k,0)for positive integers k,we show that L_(sl_(2))(2,0)is a unique frame vertex operator algebra with rank 3.展开更多
We first give the definition of a vertex superalgebroid.Then we construct a family of vertex superalgebras associated to vertex superalgebroids.As the main result,we find a sufficient and necessary condition that thes...We first give the definition of a vertex superalgebroid.Then we construct a family of vertex superalgebras associated to vertex superalgebroids.As the main result,we find a sufficient and necessary condition that these vertex superalgebras are semi-conformal.In addition,we give a concrete example of a semi-conformal vertex superalgebra and apply our results to this superalgebra.展开更多
The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vecto...The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,which is a finite set consisting of two nontrivial elements.Based on this property,we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Moreover,associating to properties of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we charaterized twisted Heisenberg-Virasoro vertex operator algebras.This will be used to understand the classification problems of vertex operator algebras whose varieties of semi-conformal vectors are finite sets.展开更多
For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal v...For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal vectors of (V, w), respectively, and were used to study duality theory of vertex operator algebras via coset constructions. Using these objects attached to (V,w), we shall understand the structure of the vertex operator algebra (V,w). At first, we define the set Sc(V,w) of semi-conformal vectors of V, then we prove that Sc(V,w) is an aiYine algebraic variety with a partial ordering and an involution map. Corresponding to each semi-conformal vector, there is a unique maximal semi-conformal vertex operator subalgebra containing it. The properties of these subalgebras are invariants of vertex operator algebras. As an example, we describe the corresponding varieties of semi-conformal vectors for Heisenberg vertex operator algebras. As an application, we give two characterizations of Heisenberg vertex operator algebras using the properties of these varieties.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.12475002).
文摘In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family of vertex operator algebras V_(√kA_(1)) associated to rank-one positive definite even lattices √kA_(1) for arbitrary positive integers k to characterize these even lattice vertex operator algebras.In such a family of lattice vertex operator algebras V_(√kA_(1)),the vertex operator algebra V_(√2A_(1)) is different from others.Hence we describe the varieties of semi-conformal vectors of V_(√2A_(1)) and the fixed vertex operator subalgebra V^(+)√2A_(1).Moreover,as applications,we study the relations between vertex operator algebras V_(√kA_(1) )and L_(sl_(2))(k,0)for arbitrary positive integers k by the viewpoint of semi-conformal homomorphisms of vertex operator algebras.For case k=2,in the series of rational simple affine vertex operator algebras L_(sl_(2))(k,0)for positive integers k,we show that L_(sl_(2))(2,0)is a unique frame vertex operator algebra with rank 3.
文摘We first give the definition of a vertex superalgebroid.Then we construct a family of vertex superalgebras associated to vertex superalgebroids.As the main result,we find a sufficient and necessary condition that these vertex superalgebras are semi-conformal.In addition,we give a concrete example of a semi-conformal vertex superalgebra and apply our results to this superalgebra.
基金supported by The Key Research Project of Institutions of Higher Education in Henan Province,P.R.China(No.17A11003)
文摘The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,which is a finite set consisting of two nontrivial elements.Based on this property,we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Moreover,associating to properties of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we charaterized twisted Heisenberg-Virasoro vertex operator algebras.This will be used to understand the classification problems of vertex operator algebras whose varieties of semi-conformal vectors are finite sets.
基金supported by the State Scholarship Fund of China Scholarship Council (Grant No. 201208410122)
文摘For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal vectors of (V, w), respectively, and were used to study duality theory of vertex operator algebras via coset constructions. Using these objects attached to (V,w), we shall understand the structure of the vertex operator algebra (V,w). At first, we define the set Sc(V,w) of semi-conformal vectors of V, then we prove that Sc(V,w) is an aiYine algebraic variety with a partial ordering and an involution map. Corresponding to each semi-conformal vector, there is a unique maximal semi-conformal vertex operator subalgebra containing it. The properties of these subalgebras are invariants of vertex operator algebras. As an example, we describe the corresponding varieties of semi-conformal vectors for Heisenberg vertex operator algebras. As an application, we give two characterizations of Heisenberg vertex operator algebras using the properties of these varieties.