Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance ...Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.展开更多
This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (sale...This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (salen)cobalt(III) catalyst systems. This study focuses on the discrepancy of regioselective ring-opening of two terminal epoxides during the copolymerization with CO2. It was found that the nucleophilic ring-opening of styrene oxide occurred predominantly at the methine C a--O bond due to the election delocalization of phenyl group to stabilize the transition state for the methine C--O bond cleavage.展开更多
Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in ...Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in low-concentration electrolytes.Herein,we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.The Zn(TFSI)_(2)salt catalyzes the ring-opening polymerization of(1,3-dioxolane(DOL)),generating oxidation-resistant and non-combustible long-chain polymer(poly(1,3-dioxolane)(pDOL)).The pDOL reduces the active H_(2)O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents,ZnO and ZnF_(2).The introduction of pDOL endows the electrolyte with several advantages:excellent Zn dendrite inhibition,improved corrosion resistance,widened electrochemical window(2.6 V),and enhanced low-temperature performance(freezing point=-34.9°C).Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02%Coulomb efficiency and maintains a lifetime of 8200 h.Moreover,Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%.A Zn//VO_(2)pouch cell assembled with lean electrolyte(electrolyte/capacity(E/C=41 mL(Ah)^(-1))also demonstrates a capacity retention ratio of 92%after 600 cycles.These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering.展开更多
Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such ...Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such supports has been challenging.Herein,we report an innovative strategy for the fabrication of high-density single-atoms(Rh,Ru,Pd)catalysts on CaAl-layered double hydroxides(CaAl-LDH)via isomorphous substitution.The Rh species have occupied Ca^(2+)vacancies within CaAl-LDH laminate by ion-exchange,facilitating a substantial loading of isolated Rh single-atoms.Such catalysts displayed superior performance in the selective hydrogenation to quinoline,pivotal for liquid organic hydrogen storage,and the universality for the hydrogenation of N-heterocyclic aromatic hydrocarbons was also verified.Combining the experimental results and density functional theory calculations,the pathway of quinoline hydrogenation over Rh1CaAl-LDH was proposed.This synthetic strategy marks a significant advancement in the field of single-atom catalysts,expanding their horizons in green chemical processes.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces...The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.展开更多
The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by...The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by self-crosslinking encapsulation method.MNMGH achieved high selectivity(K_(d)=23.31 mL/g)in the acidic range,and exhibited ultrahigh silver recovery capacity(1604.8 mg/g),which greatly improved by 66%with the assistance of in-situ magnetic field.The recovered silver crystals could be directly physically exfoliated,without acid/base additions.The selective sieving effect of adsorption,MNMGH preferentially adsorbed Ag(I),and then selectively reduced to Ag(0),realizing dual-selective recovery.The in-situ magnetic field enhanced selective adsorption by enhancing mass transfer,reactivity of oxygen-containing functional groups.Furthermore,density function theory simulations demonstrated that the in-situ magnetic field could lower the silver reduction reaction energy barrier to enhance the selective reduction.Three-drive synergy system(reduction drive,adsorption drive and magnetic drive)achieved ultrahigh silver recovery performance.This study pioneered an in-situ magnetic field assisted enhancement strategy for dual-selective(adsorption/reduction)recovery of precious metal silver,which provided new idea for low-carbon recovery of noble metal from industrial waste liquids.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
BACKGROUND Traumatic brain injury(TBI)poses a considerable risk to human health.After TBI,individuals are susceptible to a range of psychiatric disorders,with depression being a primary complication.Selective serotoni...BACKGROUND Traumatic brain injury(TBI)poses a considerable risk to human health.After TBI,individuals are susceptible to a range of psychiatric disorders,with depression being a primary complication.Selective serotonin reuptake inhibitors(SSRIs)are frequently used in the treatment of depression;however,their efficacy in addressing major depressive disorder(MDD)in adults following TBI remains uncertain.AIM To investigate the efficacy of SSRIs in the treatment of MDD after TBI.METHODS A comprehensive search across multiple databases was conducted following the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement,encompassing studies published until May 2024.This review focused on studies that examined the efficacy of SSRIs in the treatment of MDD following TBI.Studies were assessed based sample size,treatment duration,treatment methodologies,severity of brain injury,assessment techniques,and drug response.A random-effects model was used to derive the summary effect size.RESULTS Eight studies compared the reduction in depression scores in patients with MDD after TBI and SSRI treatment.The eight studies did not exhibit heterogeneity(I^(2)=38%).The depression score for MDD after TBI in the SSRI group decreased more than that in the control group[odds ratio(OR)1.68,95%CI:1.09-2.58,P=0.02].The adverse reactions after treatment included diarrhea,dizziness,dry mouth,nausea,or vomiting.There was no difference in the incidence of adverse reactions after treatment between the two groups(OR 1.16,95%CI:0.78-1.73,P=0.46).These studies did not show significant heterogeneity(I^(2)=44%).CONCLUSION SSRIs may be effective in treating patients with MDD after TBI.Adequately powered,randomized,controlled trials are required to confirm these findings.展开更多
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori...Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.展开更多
Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor...Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.展开更多
A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband a...A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband and exhibits more stable frequency responses and lower insertion loss under wide-angle oblique incidence compared with the typical three-layer metal-dielectric structure.According to the simulation results,the proposed FSS can achieve a passband range of 1.7-2.7 GHz with an insertion loss of less than 0.5 d B and a relative bandwidth of 44.1%,and it can preserve stable transmission characteristics with the incident angle ranging from 0°to 45°.展开更多
In clinical settings,tantalum(Ta)is extensively implemented as a bone implant material.Ta is highly stable and biocompatible in vivo,being one of the metallic biomaterials having high affinity for bone tissue.However,...In clinical settings,tantalum(Ta)is extensively implemented as a bone implant material.Ta is highly stable and biocompatible in vivo,being one of the metallic biomaterials having high affinity for bone tissue.However,since Ta is a refractory metal,its application as bone implant material is limited.Most recently,additive manufacturing technology has introduced a novel approach to producing Ta implants.The present study compared the microstructure,surface and mechanical characteristics,and in vitro and in vivo biological characteristics of selective laser melted Ta(SLM Ta),selective laser melted titanium alloy Ti6Al4V with Ta coating(SLM Ti6Al4V with Ta coating),and selective laser melted Ti6Al4V(SLM Ti6Al4V).Results indicate that SLM Ta possesses superior mechanical characteristics contrasted with SLM Ti6Al4V and SLM Ti6Al4V with Ta coating.Furthermore,SLM Ta has anti-inflammatory activity,excellent osseointegration performance,and osteogenic bioactivity.We fabricated an SLM porous Ta bone plate and employed it for internal fixation of ulnar and radius fractures,which has been known to promote fracture healing.Further,the SLM porous Ta bone plate could form an integrated bone plate structure with the bone tissue at the implant site.Afterward,the porous structure of the plate minimizes its elastic modulus and eliminates stress shielding,leaving no need for further surgical removal.In conclusion,the SLM porous Ta bone plate meets the performance requirements(stimulating bone regeneration,non-stress shelter,and no need for second surgery)of an ideal bone plate and may revolutionize the field of internal fixation bone plates for fractures.展开更多
The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found th...The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.展开更多
Selective reduction of N_(2)O by CO under excess O_(2) was effectively catalyzed by Fe(0.9 wt%)-exchangedβzeolite(Fe0.9β)in the temperature range of 250–500°C.Kinetic experiments showed that the apparent activ...Selective reduction of N_(2)O by CO under excess O_(2) was effectively catalyzed by Fe(0.9 wt%)-exchangedβzeolite(Fe0.9β)in the temperature range of 250–500°C.Kinetic experiments showed that the apparent activation energy for N_(2)O reduction with CO was lower than that for the direct N_(2)O decomposition,and the rate of N_(2)O reduction with CO at 300℃ was 16 times higher than that for direct N_(2)O decomposition.Reaction order analyses showed that CO and N_(2)O were involved in the kinetically important step,while O_(2) was not involved in the important step.At 300℃,the rate of CO oxidation with 0.1%N_(2)O was two times higher than that of CO oxidation with 10%O_(2).This quantitatively demonstrates the preferential oxidation of CO by N_(2)O under excess O_(2) over Fe0.9β.Operando/in-situ diffuse reflectance ultraviolet-visible spectroscopy showed a redox-based catalytic cycle;α-Fe-O species are reduced by CO to give CO_(2) and reduced Fe species,which are then re-oxidized by N_(2)O to regenerate theα-Fe-O species.The initial rate for the regeneration ofα-Fe-O species under 0.1%N_(2)O was four times higher than that under 10%O_(2).This result shows quantitative evidence on the higher reactivity of N_(2)O than O_(2) for the regeneration ofα-Fe-O intermediates,providing a fundamental reason why the Fe0.9βcatalyst selectively promotes the CO+N_(2)O reaction under excess O_(2) rather than the undesired side reaction of CO+O_(2).The mechanistic model was verified by the results of in-situ Fe K-edge X-ray absorption spectroscopy.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,...Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)has become a growing health concern globally.Microvascular invasion and high tumor burden are key factors limiting the curative effect of selective internal radiation therapy(SI...BACKGROUND Hepatocellular carcinoma(HCC)has become a growing health concern globally.Microvascular invasion and high tumor burden are key factors limiting the curative effect of selective internal radiation therapy(SIRT).CASE SUMMARY This case study reports a 49-year-old woman who was diagnosed with China Liver Cancer Staging(CNLC)IIIa HCC and>15 cm tumor diameter.Initially,due to insufficient future liver remnant and vascular invasion,the tumor was unresectable;however,radical hepatectomy was performed after successful conversion therapy with SIRT using yttrium-90(90Y)resin microspheres followed by hepatic arterial infusion chemotherapy(HAIC)with tyrosine kinase inhibitor(TKI)and anti-programmed death-1(PD-1)antibody.SIRT using 90Y resin microspheres was given by the right hepatic artery and chemoembolization was simultaneously performed in the tumor’s feeding vessels from the right diaphragmatic artery.HAIC was followed every three weeks with lenvatinib and tislelizumab.At 4 months post-SIRT,the tumor was downstaged to CNLC Ib and the patient successfully underwent hepatectomy.The histopathological examination of the resected specimen showed extensive necrosis.CONCLUSION This case study provides evidence for an integrated treatment strategy combining SIRT and HAIC with TKI and anti-PD-1 antibodies for patients with large HCC and microvascular invasion.Further confirmatory trials are required in the future.展开更多
Al−3.51Mg−0.42Mn−0.76Sc−0.40Zr(wt.%)alloy was prepared by selective laser melting(SLM)method.The mechanical properties and microstructure of the alloy after annealing at 300℃or 325℃for 6 h were studied.The tensile s...Al−3.51Mg−0.42Mn−0.76Sc−0.40Zr(wt.%)alloy was prepared by selective laser melting(SLM)method.The mechanical properties and microstructure of the alloy after annealing at 300℃or 325℃for 6 h were studied.The tensile strength,yield strength and elongation of the SLM alloy were 339 MPa,213 MPa and 24%,respectively.After annealing at 300℃for 6 h,the tensile and yield strength of the alloy were increased to 518 MPa and 505 MPa,respectively,and the elongation decreased to 13%.After annealing at 325℃for 6 h,the yield strength of the alloy was reduced to 483 MPa.The grain size of the alloy after annealing at 300℃and 325℃did not grow significantly,but the segregation of Mg element was significantly reduced.Nanoscale Al3(Sc,Zr)phase was precipitated from the alloy matrix,and its average size increased with the increase of annealing temperature.Therefore,the strength improvement of the annealed SLM aluminum alloy was mainly attributed to the precipitation strengthening of Al3(Sc,Zr),and the strengthening mechanism was mainly dislocation cutting mechanism.When the annealing temperature was too high,the coarsening of Al3(Sc,Zr)particles caused the strength to decrease.展开更多
Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalys...Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalyst still remains a scientific challenge. Here we report our investigations into organocatalytic stereoselective ROP of rac-LA by utilizing novel bulky chiral and achiral N-heterocyclic carbenes(NHC), 1,3-bis-(1′-naphthylethyl)imidazolin-2-ylidene. The effect of polymerization conditions(e.g. solvent, temperature, alcohol initiator) on ROP behavior by these bulky NHCs has been fully studied, leading to the formation of isotactic-rich stereoblock polylactide(Pi = 0.81) under optimized conditions with high activity(Conv. = 98% in 30 min) and narrow molecular weight dispersity(D = 1.05).展开更多
基金the National Natural Science Foundation of China (U1662103 and 21673290)the National HiTech Research and Development Program (863) of China (2015AA034603)the China National Offshore Oil Corporation Fund (LHYJYKJSA20160002)
文摘Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.
基金financially supported by the National Natural Science Foundation of China(Nos.21134002 and 21174023)Program for Changjiang Scholars and Innovative Research Teams in University(No.IRT13008)the Chang Jiang Scholars Program(No.T2011056)from the Ministry of Education of China
文摘This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (salen)cobalt(III) catalyst systems. This study focuses on the discrepancy of regioselective ring-opening of two terminal epoxides during the copolymerization with CO2. It was found that the nucleophilic ring-opening of styrene oxide occurred predominantly at the methine C a--O bond due to the election delocalization of phenyl group to stabilize the transition state for the methine C--O bond cleavage.
基金financially supported by the National Natural Science Foundation of China(52162036 and 22378342)Key Project of Nature Science Foundation of Xinjiang(2021D01D08)+2 种基金Major Projects of Xinjiang(2022A01005-4 and 2021A01001-1)Key Research and Development Project of Xinjiang(2023B01025-1)the support from the Doctoral Student Special Program of the Young Talents Support Project of the China Association for Science and Technology in 2024。
文摘Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in low-concentration electrolytes.Herein,we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.The Zn(TFSI)_(2)salt catalyzes the ring-opening polymerization of(1,3-dioxolane(DOL)),generating oxidation-resistant and non-combustible long-chain polymer(poly(1,3-dioxolane)(pDOL)).The pDOL reduces the active H_(2)O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents,ZnO and ZnF_(2).The introduction of pDOL endows the electrolyte with several advantages:excellent Zn dendrite inhibition,improved corrosion resistance,widened electrochemical window(2.6 V),and enhanced low-temperature performance(freezing point=-34.9°C).Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02%Coulomb efficiency and maintains a lifetime of 8200 h.Moreover,Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%.A Zn//VO_(2)pouch cell assembled with lean electrolyte(electrolyte/capacity(E/C=41 mL(Ah)^(-1))also demonstrates a capacity retention ratio of 92%after 600 cycles.These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering.
文摘Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such supports has been challenging.Herein,we report an innovative strategy for the fabrication of high-density single-atoms(Rh,Ru,Pd)catalysts on CaAl-layered double hydroxides(CaAl-LDH)via isomorphous substitution.The Rh species have occupied Ca^(2+)vacancies within CaAl-LDH laminate by ion-exchange,facilitating a substantial loading of isolated Rh single-atoms.Such catalysts displayed superior performance in the selective hydrogenation to quinoline,pivotal for liquid organic hydrogen storage,and the universality for the hydrogenation of N-heterocyclic aromatic hydrocarbons was also verified.Combining the experimental results and density functional theory calculations,the pathway of quinoline hydrogenation over Rh1CaAl-LDH was proposed.This synthetic strategy marks a significant advancement in the field of single-atom catalysts,expanding their horizons in green chemical processes.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金supported by the National Key Research and Development Program of China(No.2019YFC1803501)the National Natural Science Foundation of China(No.52074357)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ30713)the Vanadium Titanium Union Foundationthe Project of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources,China。
文摘The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.
基金supported by The National Natural Science Foundation of China(52170087,22276137).
文摘The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by self-crosslinking encapsulation method.MNMGH achieved high selectivity(K_(d)=23.31 mL/g)in the acidic range,and exhibited ultrahigh silver recovery capacity(1604.8 mg/g),which greatly improved by 66%with the assistance of in-situ magnetic field.The recovered silver crystals could be directly physically exfoliated,without acid/base additions.The selective sieving effect of adsorption,MNMGH preferentially adsorbed Ag(I),and then selectively reduced to Ag(0),realizing dual-selective recovery.The in-situ magnetic field enhanced selective adsorption by enhancing mass transfer,reactivity of oxygen-containing functional groups.Furthermore,density function theory simulations demonstrated that the in-situ magnetic field could lower the silver reduction reaction energy barrier to enhance the selective reduction.Three-drive synergy system(reduction drive,adsorption drive and magnetic drive)achieved ultrahigh silver recovery performance.This study pioneered an in-situ magnetic field assisted enhancement strategy for dual-selective(adsorption/reduction)recovery of precious metal silver,which provided new idea for low-carbon recovery of noble metal from industrial waste liquids.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
文摘BACKGROUND Traumatic brain injury(TBI)poses a considerable risk to human health.After TBI,individuals are susceptible to a range of psychiatric disorders,with depression being a primary complication.Selective serotonin reuptake inhibitors(SSRIs)are frequently used in the treatment of depression;however,their efficacy in addressing major depressive disorder(MDD)in adults following TBI remains uncertain.AIM To investigate the efficacy of SSRIs in the treatment of MDD after TBI.METHODS A comprehensive search across multiple databases was conducted following the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement,encompassing studies published until May 2024.This review focused on studies that examined the efficacy of SSRIs in the treatment of MDD following TBI.Studies were assessed based sample size,treatment duration,treatment methodologies,severity of brain injury,assessment techniques,and drug response.A random-effects model was used to derive the summary effect size.RESULTS Eight studies compared the reduction in depression scores in patients with MDD after TBI and SSRI treatment.The eight studies did not exhibit heterogeneity(I^(2)=38%).The depression score for MDD after TBI in the SSRI group decreased more than that in the control group[odds ratio(OR)1.68,95%CI:1.09-2.58,P=0.02].The adverse reactions after treatment included diarrhea,dizziness,dry mouth,nausea,or vomiting.There was no difference in the incidence of adverse reactions after treatment between the two groups(OR 1.16,95%CI:0.78-1.73,P=0.46).These studies did not show significant heterogeneity(I^(2)=44%).CONCLUSION SSRIs may be effective in treating patients with MDD after TBI.Adequately powered,randomized,controlled trials are required to confirm these findings.
文摘Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.
基金financially supported by Heilongjiang Postdoctoral Fund(Grant No.LBH-Z24057)Outstanding Master’s and Doctoral Thesis of Longjiang in the New Era(Grant No.LJYXL2023-076).
文摘Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20220800001。
文摘A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband and exhibits more stable frequency responses and lower insertion loss under wide-angle oblique incidence compared with the typical three-layer metal-dielectric structure.According to the simulation results,the proposed FSS can achieve a passband range of 1.7-2.7 GHz with an insertion loss of less than 0.5 d B and a relative bandwidth of 44.1%,and it can preserve stable transmission characteristics with the incident angle ranging from 0°to 45°.
基金supported by the National Natural Science Foundation of China(No.82172398)Liaoning Revitalization Talents Program(No.XLYC2203102).
文摘In clinical settings,tantalum(Ta)is extensively implemented as a bone implant material.Ta is highly stable and biocompatible in vivo,being one of the metallic biomaterials having high affinity for bone tissue.However,since Ta is a refractory metal,its application as bone implant material is limited.Most recently,additive manufacturing technology has introduced a novel approach to producing Ta implants.The present study compared the microstructure,surface and mechanical characteristics,and in vitro and in vivo biological characteristics of selective laser melted Ta(SLM Ta),selective laser melted titanium alloy Ti6Al4V with Ta coating(SLM Ti6Al4V with Ta coating),and selective laser melted Ti6Al4V(SLM Ti6Al4V).Results indicate that SLM Ta possesses superior mechanical characteristics contrasted with SLM Ti6Al4V and SLM Ti6Al4V with Ta coating.Furthermore,SLM Ta has anti-inflammatory activity,excellent osseointegration performance,and osteogenic bioactivity.We fabricated an SLM porous Ta bone plate and employed it for internal fixation of ulnar and radius fractures,which has been known to promote fracture healing.Further,the SLM porous Ta bone plate could form an integrated bone plate structure with the bone tissue at the implant site.Afterward,the porous structure of the plate minimizes its elastic modulus and eliminates stress shielding,leaving no need for further surgical removal.In conclusion,the SLM porous Ta bone plate meets the performance requirements(stimulating bone regeneration,non-stress shelter,and no need for second surgery)of an ideal bone plate and may revolutionize the field of internal fixation bone plates for fractures.
基金financially supported by the National Natural Science Foundation of China(No.51404302)the Natural Science Foundation of Hunan Province,China(Nos.2020JJ4732,2022JJ30897)the Natural Science Foundation of Changsha City,China(No.kq2202430).
文摘The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.
文摘Selective reduction of N_(2)O by CO under excess O_(2) was effectively catalyzed by Fe(0.9 wt%)-exchangedβzeolite(Fe0.9β)in the temperature range of 250–500°C.Kinetic experiments showed that the apparent activation energy for N_(2)O reduction with CO was lower than that for the direct N_(2)O decomposition,and the rate of N_(2)O reduction with CO at 300℃ was 16 times higher than that for direct N_(2)O decomposition.Reaction order analyses showed that CO and N_(2)O were involved in the kinetically important step,while O_(2) was not involved in the important step.At 300℃,the rate of CO oxidation with 0.1%N_(2)O was two times higher than that of CO oxidation with 10%O_(2).This quantitatively demonstrates the preferential oxidation of CO by N_(2)O under excess O_(2) over Fe0.9β.Operando/in-situ diffuse reflectance ultraviolet-visible spectroscopy showed a redox-based catalytic cycle;α-Fe-O species are reduced by CO to give CO_(2) and reduced Fe species,which are then re-oxidized by N_(2)O to regenerate theα-Fe-O species.The initial rate for the regeneration ofα-Fe-O species under 0.1%N_(2)O was four times higher than that under 10%O_(2).This result shows quantitative evidence on the higher reactivity of N_(2)O than O_(2) for the regeneration ofα-Fe-O intermediates,providing a fundamental reason why the Fe0.9βcatalyst selectively promotes the CO+N_(2)O reaction under excess O_(2) rather than the undesired side reaction of CO+O_(2).The mechanistic model was verified by the results of in-situ Fe K-edge X-ray absorption spectroscopy.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金China Postdoctoral Science Foundation (2023M733451)Dalian Innovation Team in Key Areas(2020RT06)Engineering Research Center for Key Aromatic Compounds and LiaoNing Key Laboratory,Liaoning Provincial Natural Science Foundation (Doctoral Research Start-up Fund 2024-BSBA-37)。
文摘Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.
基金The Fujian Key Laboratory of Translational Cancer Medicine and The Yttrium Little Red Flower Health Fund Project of Henan Sunshine Medical and Health Development Foundation,No.HKP2024001.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has become a growing health concern globally.Microvascular invasion and high tumor burden are key factors limiting the curative effect of selective internal radiation therapy(SIRT).CASE SUMMARY This case study reports a 49-year-old woman who was diagnosed with China Liver Cancer Staging(CNLC)IIIa HCC and>15 cm tumor diameter.Initially,due to insufficient future liver remnant and vascular invasion,the tumor was unresectable;however,radical hepatectomy was performed after successful conversion therapy with SIRT using yttrium-90(90Y)resin microspheres followed by hepatic arterial infusion chemotherapy(HAIC)with tyrosine kinase inhibitor(TKI)and anti-programmed death-1(PD-1)antibody.SIRT using 90Y resin microspheres was given by the right hepatic artery and chemoembolization was simultaneously performed in the tumor’s feeding vessels from the right diaphragmatic artery.HAIC was followed every three weeks with lenvatinib and tislelizumab.At 4 months post-SIRT,the tumor was downstaged to CNLC Ib and the patient successfully underwent hepatectomy.The histopathological examination of the resected specimen showed extensive necrosis.CONCLUSION This case study provides evidence for an integrated treatment strategy combining SIRT and HAIC with TKI and anti-PD-1 antibodies for patients with large HCC and microvascular invasion.Further confirmatory trials are required in the future.
基金financially supported by the National Key Research and Development Program of China(No.2018YFB2001801)State’s Key Project of Research and Development Plan(No.2021YFC1910505)the Key Research and Development Program of Guangdong Province,China(No.2020B010186002)。
文摘Al−3.51Mg−0.42Mn−0.76Sc−0.40Zr(wt.%)alloy was prepared by selective laser melting(SLM)method.The mechanical properties and microstructure of the alloy after annealing at 300℃or 325℃for 6 h were studied.The tensile strength,yield strength and elongation of the SLM alloy were 339 MPa,213 MPa and 24%,respectively.After annealing at 300℃for 6 h,the tensile and yield strength of the alloy were increased to 518 MPa and 505 MPa,respectively,and the elongation decreased to 13%.After annealing at 325℃for 6 h,the yield strength of the alloy was reduced to 483 MPa.The grain size of the alloy after annealing at 300℃and 325℃did not grow significantly,but the segregation of Mg element was significantly reduced.Nanoscale Al3(Sc,Zr)phase was precipitated from the alloy matrix,and its average size increased with the increase of annealing temperature.Therefore,the strength improvement of the annealed SLM aluminum alloy was mainly attributed to the precipitation strengthening of Al3(Sc,Zr),and the strengthening mechanism was mainly dislocation cutting mechanism.When the annealing temperature was too high,the coarsening of Al3(Sc,Zr)particles caused the strength to decrease.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.17JC1401200)
文摘Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalyst still remains a scientific challenge. Here we report our investigations into organocatalytic stereoselective ROP of rac-LA by utilizing novel bulky chiral and achiral N-heterocyclic carbenes(NHC), 1,3-bis-(1′-naphthylethyl)imidazolin-2-ylidene. The effect of polymerization conditions(e.g. solvent, temperature, alcohol initiator) on ROP behavior by these bulky NHCs has been fully studied, leading to the formation of isotactic-rich stereoblock polylactide(Pi = 0.81) under optimized conditions with high activity(Conv. = 98% in 30 min) and narrow molecular weight dispersity(D = 1.05).