[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM...[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.展开更多
A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are ...A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are unclear.A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture,salt migration,microbial community composition,as well as root growth in sunflower.The study included four treatments:Control(no straw interlayer);S3(straw interlayer of 3.0 cm);S5(straw interlayer of 5.0 cm);S7(straw interlayer of 7.0 cm).Straw interlayer treatments increased soil moisture by 8.2–11.0%after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.Total root length,total root surface area,average root diameter,total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control,and were the highest under the S5 treatment.This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer,which was increased by 55.7 and 54.7%,respectively,in the S5 treatment.Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil.展开更多
Soil spiders were pitfall-trapped once every month in three forest vegetation types of Ziwuling natural secondary forest region, Gansu Province from April to October, 2004. A total of 2 164 spiders were collected, bel...Soil spiders were pitfall-trapped once every month in three forest vegetation types of Ziwuling natural secondary forest region, Gansu Province from April to October, 2004. A total of 2 164 spiders were collected, belonging to 43 species in 19 families, captured in 630 pitfall trap collections. Linyphiidae, Gnaphosidae and Lycosodae were found to be the dominant families in all habitat types, and the composition of soil spider assemblages was different between the three habitats. Ecological indices of diversity, richness and evenness were significantly different between the three habitats ( P 〈 0.05). The relative abundance of guilds (based on numbers of individuals) varied greatly (P 〈 0.01), which may releet resource availability within habitat types. The existence of different patterns within the assemblages reflects the importance of maintaining habitat heterogeneity and vegetation types in order to preserve soil spider biodiversity.展开更多
Microbial biomass and species in the rhizosphere soil of Mirabilis jalapa(Linn.)(the saline-alkali soil contaminated by total petroleum hydrocarbon(TPH))were studied with the technology of phospholipid fatty ac...Microbial biomass and species in the rhizosphere soil of Mirabilis jalapa(Linn.)(the saline-alkali soil contaminated by total petroleum hydrocarbon(TPH))were studied with the technology of phospholipid fatty acids(PLFAs) analysis,to explore the effects of Mirabilis jalapa(Linn.) growth on the structure characteristics of microbial communities and degradation of TPH in the petroleum-contaminated salinealkali soil.The result showed that compared with the CK soil without Mirabilis jalapa(Linn.),the kind change rates of PLFAs were 71.4%,69.2% and 33.3% in spring,summer and autumn,respectively,and the degradation of TPH increased by 47.6%,28.3%,and 18.9% in the rhizosphere soil in spring,summer and autumn,respectively.Correlation analysis was used to determine the correlation between the degradation of TPH and the soil microbial communities:77.8% of the microbial PLFAs showed positive correlation(the correlation coefficient r﹥0) with the degradation of TPH,and 55.6% of the PLFAs had high positive correlation with the degradation of TPH with a correlation coefficient r ≥0.8.In addition,the relative contents of SAT and MONO had high correlation with the degradation of TPH in the CK soil,and the correlation coefficients were 0.92 and 0.60,respectively;but in the rhizosphere soil,42.1% of the PLFAs had positive correlation with it,and only21.1% had high positive correlation with the degradation of TPH,the relative contents of TBSAT,MONO and CYCLO had moderate or low positive correlation with the degradation of TPH,and the correlation coefficients were 0.56,0.50 and 0.07 respectively.It was shown that the growth of mirabilis jalapa(Linn.) highly affected the microbial community structure and TPH degradation speed in the rhizosphere soil,providing a theoretical basis for the research on phytoremediation of petroleumcontaminated saline-alkali soil.展开更多
Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1...Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
There is great potential for agriculture in saline-alkali soil area in Songnen Plain, Northeast China. But the sustainable crop production in this area has been restricted by a few of main factors, such as less precip...There is great potential for agriculture in saline-alkali soil area in Songnen Plain, Northeast China. But the sustainable crop production in this area has been restricted by a few of main factors, such as less precipitation, h igher evaporation and frequent drought, high salinity and alkalinity, high excha ngeable sodium content and poor infiltration of the soil, and insufficiency and low availability in nutrition. It is also considered that there are a few of fav orable conditions for agricultural development in this region, such as sufficien t light and heat resources, rich ground water resources, plenty of manure produc ed by livestock, and so on. At the same time, scientific management and measurem ents have been employed; rational irrigation and drainage system has been establ ished; reclamation, amendment and fertilization of soil, and suitable strategies of cropping practices have been made for the sustainable development of agricul ture. Great progress has been made during 1996-2000.展开更多
Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and ...Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and available N (NO3-N and NH4-N) were measured. Laboratory incubations of soil samples were conducted during a 50 days period for the measurement of nitrogen mineralization rate and nitrification potenial. The results proved a degeneration in soil nitrogen status with stand age of larch plantations, which implicated one important aspect of soil degradation when natural forest was replaced by coniferous plantations.展开更多
Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial bi...Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.展开更多
Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chine...Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes.展开更多
In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized...In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.展开更多
Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inla...Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.展开更多
Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal...Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.展开更多
Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to ...Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.展开更多
Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and co...Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and conformed with the Langmuir,freundlich and Temkin isotherms.Desorption of secondary-adsorbed Cu indicated that the hysteresis ratio decreased as Cu secondary adsorption increased,which meant that secondry-adsorbed Cu existed not only in the exchangeable form but also in the bridge form and specifically adsorbed form.The amount of Cu secondary adsorption increased with the temperature.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the p...In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the population of bacterial colony(84.8%-95.6%),actinomycetes colony(12.0%-14.5%)and fungi colony(0.5%-1.1%)increased significantly(P<0.05).The population of ammonia bacteria,aerobic cellulose decomposition bacteria in the soil of Vicia sativa L.(201.99%and 395.49%),Medicago sativa(152.43%and 319.90%)and Sesbania cannabina(Retz.)Pori(193.14%and 396.08%)were higher significantly than that of Panicum virgatum L.(49%and 60%),Sorghum bicolor(L.)Moench(99%and 210%),Amaranthus hypochondriacus L.(75%and 36%)and Aneurotepidimu chinense(75%and 77%)(P<0.05).However,Sorghum bicolor(L.)Moench was evidently higher than Panicum virgatum L.,Amaranthus hypochondriacus L.and Aneurotepidimu chinense(P<0.05)in the soil.The population of ammonia bacteria and aerobic cellulose-decomposing bacteria was significantly correlated with the five enzymes(P<0.05),which could improve the microenvironment in saline-alkali soil to accelerate the element cycling and promote the sustainable development of agriculture through cultivating Medicago sativa,Vicia sativa L.,Sesbania cannabina(Retz.)Pori and Sorghum bicolor(L.)Moench.展开更多
Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil ...Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.展开更多
In forest ecosystems,landslides are one of the most common natural disturbances,altering the physical,chemical and microbial characteristics of soil and thus further altering ecosystem properties and processes.Althoug...In forest ecosystems,landslides are one of the most common natural disturbances,altering the physical,chemical and microbial characteristics of soil and thus further altering ecosystem properties and processes.Although secondary forests comprise more than 50%of global forests,the influence of landslides on the soil properties in these forests is underappreciated.Therefore,this study investigates the influence of landslides on the chemical and microbial nature of the soil.Study of these modifications is critical,as it provides baseline evidence for subsequent forest revegetation.We selected four independent landslides and adjacent secondary forest stands as references in a temperate secondary forest in northeastern China.Soils were obtained from each stand at 0–10 cm and 10–20 cm depths to determine chemical and microbial properties.Soil total carbon(TC),total nitrogen(TN),nitrate(NO_(3)^(-)-N),available phosphorus(P),microbial biomass carbon(MBC),microbial biomass nitrogen(MBN),microbial biomass phosphorus(MBP)and phenol oxidase,exoglucanase,β-glucosidase,N-acetyl-β-glucosaminidase,L-asparaginase and acid phosphatase activities were 29.3–70.1%lower at the 0–10 cm soil depth in the landslide sites than at the secondary forest sites,whereas total phosphorus(TP)and ammonium(NH_(4)^(+)-N)were unaffected by the landslides.N-related enzymes,N-acetyl-β-glucosaminidase and L-asparaginase were reduced by more than 65%in the landslide sites,consistent with the decrease in nitrate concentration at the same 0–10 cm depth.At a depth of 10–20 cm,the variations in the soil properties were consistent with those at the 0–10 cm depth.The results demonstrated that soil chemical and microbial properties were significantly disrupted after the landslides,even though the landslides had occurred 6 years earlier.A long time is thus needed to restore the original C and nutrient levels.In temperate secondary forests,soil TC and TN contents were found to be more suitable for estimating the state of soil restoration than soil TP content.展开更多
An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to...An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to describe only the envelope of the maximum plastic deformations generated during the cyclic loading process, which can calculate the accumulated deformation by means of relatively large load cycle increments. The concept of volumetric hardening was incorporated into the model and a so-called overstress formulation was employed to describe the evolution of the accumulated volumetric deformation as a state parameter. The model accounted for ratcheting shakedown and accumulation such as a pseudo-yield surface(a shakedown surface) associated with loading inside the current virgin yield surface which was implemented into the well-known modified Cam-clay model. Finally, the model was calibrated using data from the stress-controlled drained cyclic triaxial tests on homogeneous fine grained sands. It is seen that the model can successfully represent important features of the ratcheting accumulation of both volumetric and deviatoric deformation caused by repeated drained loading over a large number of cycles.展开更多
基金Supported by Key Research and Development Program of Hebei Province(20322911D,21322903D)Innovation Ability Promotion Program of Hebei Province(20562903D)+1 种基金Technical Innovation Guidance Program of Hebei Province(20822904D)Science and Technology Research and Development Program of Qinhuangdao City(202201B028).
文摘[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.
基金supported by the National Natural Science Foundation of China(U23A2054)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202201)+3 种基金the earmarked fund for China Agriculture Research System(CARS-02-24)the Inner Mongolia Autonomous Region Research Project of China(NMKJXM202303-03 and 2021EEDSCXSFQZD011-03)the National Key Scientific Research Project of China(2023YFD200140401)the Ordos Science and Technology Major Project,China(ZD20232320)。
文摘A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are unclear.A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture,salt migration,microbial community composition,as well as root growth in sunflower.The study included four treatments:Control(no straw interlayer);S3(straw interlayer of 3.0 cm);S5(straw interlayer of 5.0 cm);S7(straw interlayer of 7.0 cm).Straw interlayer treatments increased soil moisture by 8.2–11.0%after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.Total root length,total root surface area,average root diameter,total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control,and were the highest under the S5 treatment.This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer,which was increased by 55.7 and 54.7%,respectively,in the S5 treatment.Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil.
文摘Soil spiders were pitfall-trapped once every month in three forest vegetation types of Ziwuling natural secondary forest region, Gansu Province from April to October, 2004. A total of 2 164 spiders were collected, belonging to 43 species in 19 families, captured in 630 pitfall trap collections. Linyphiidae, Gnaphosidae and Lycosodae were found to be the dominant families in all habitat types, and the composition of soil spider assemblages was different between the three habitats. Ecological indices of diversity, richness and evenness were significantly different between the three habitats ( P 〈 0.05). The relative abundance of guilds (based on numbers of individuals) varied greatly (P 〈 0.01), which may releet resource availability within habitat types. The existence of different patterns within the assemblages reflects the importance of maintaining habitat heterogeneity and vegetation types in order to preserve soil spider biodiversity.
文摘Microbial biomass and species in the rhizosphere soil of Mirabilis jalapa(Linn.)(the saline-alkali soil contaminated by total petroleum hydrocarbon(TPH))were studied with the technology of phospholipid fatty acids(PLFAs) analysis,to explore the effects of Mirabilis jalapa(Linn.) growth on the structure characteristics of microbial communities and degradation of TPH in the petroleum-contaminated salinealkali soil.The result showed that compared with the CK soil without Mirabilis jalapa(Linn.),the kind change rates of PLFAs were 71.4%,69.2% and 33.3% in spring,summer and autumn,respectively,and the degradation of TPH increased by 47.6%,28.3%,and 18.9% in the rhizosphere soil in spring,summer and autumn,respectively.Correlation analysis was used to determine the correlation between the degradation of TPH and the soil microbial communities:77.8% of the microbial PLFAs showed positive correlation(the correlation coefficient r﹥0) with the degradation of TPH,and 55.6% of the PLFAs had high positive correlation with the degradation of TPH with a correlation coefficient r ≥0.8.In addition,the relative contents of SAT and MONO had high correlation with the degradation of TPH in the CK soil,and the correlation coefficients were 0.92 and 0.60,respectively;but in the rhizosphere soil,42.1% of the PLFAs had positive correlation with it,and only21.1% had high positive correlation with the degradation of TPH,the relative contents of TBSAT,MONO and CYCLO had moderate or low positive correlation with the degradation of TPH,and the correlation coefficients were 0.56,0.50 and 0.07 respectively.It was shown that the growth of mirabilis jalapa(Linn.) highly affected the microbial community structure and TPH degradation speed in the rhizosphere soil,providing a theoretical basis for the research on phytoremediation of petroleumcontaminated saline-alkali soil.
基金National Natural Science Foundation of China, No.49671077 Project of Jilin Provincial Committee for Science and Technology, No.
文摘Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
文摘There is great potential for agriculture in saline-alkali soil area in Songnen Plain, Northeast China. But the sustainable crop production in this area has been restricted by a few of main factors, such as less precipitation, h igher evaporation and frequent drought, high salinity and alkalinity, high excha ngeable sodium content and poor infiltration of the soil, and insufficiency and low availability in nutrition. It is also considered that there are a few of fav orable conditions for agricultural development in this region, such as sufficien t light and heat resources, rich ground water resources, plenty of manure produc ed by livestock, and so on. At the same time, scientific management and measurem ents have been employed; rational irrigation and drainage system has been establ ished; reclamation, amendment and fertilization of soil, and suitable strategies of cropping practices have been made for the sustainable development of agricul ture. Great progress has been made during 1996-2000.
文摘Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and available N (NO3-N and NH4-N) were measured. Laboratory incubations of soil samples were conducted during a 50 days period for the measurement of nitrogen mineralization rate and nitrification potenial. The results proved a degeneration in soil nitrogen status with stand age of larch plantations, which implicated one important aspect of soil degradation when natural forest was replaced by coniferous plantations.
基金Foundation project: This research was supported by Chinese Academy of Science Program (N0. ZCX3-SW-418) and the Natural Science Foundation of China (N0. 30470303)
文摘Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.
基金funded by the National Natural Science Foundation of China(31470544,41271265)a special financial grant from the China Postdoctoral Science Foundation(2013T60900)the Science and Technology Projects in Gansu Province(1304NKCA135)
文摘Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes.
基金supported by the College Sci-Tech Achievements Industrialization Project of Jiangsu Education Department(Grant No.JH07-010)
文摘In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.
基金the auspices of National Key Research and Development Program of China(No.2016YFC05004)National Project of China(No.41971140)Science Foundation for Excellent Youth Scholars of Jilin Province(No.20180520097JH)。
文摘Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.
基金Project(51608281)supported by the National Natural Science Foundation of ChinaProject(LGG21E080005)supported by the Provincial Natural Science Foundation of Zhejiang Province,China。
文摘Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.
基金This work was supported by the National Natural Science Foundation of China(31601986)Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Academia Sinica.
文摘Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and conformed with the Langmuir,freundlich and Temkin isotherms.Desorption of secondary-adsorbed Cu indicated that the hysteresis ratio decreased as Cu secondary adsorption increased,which meant that secondry-adsorbed Cu existed not only in the exchangeable form but also in the bridge form and specifically adsorbed form.The amount of Cu secondary adsorption increased with the temperature.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
基金Supported by Funding(Topic CXZ003)of Key Research and Development Plan of Ningxia Hui Autonomous Region(2019BBF02001,2018BBF23008)。
文摘In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the population of bacterial colony(84.8%-95.6%),actinomycetes colony(12.0%-14.5%)and fungi colony(0.5%-1.1%)increased significantly(P<0.05).The population of ammonia bacteria,aerobic cellulose decomposition bacteria in the soil of Vicia sativa L.(201.99%and 395.49%),Medicago sativa(152.43%and 319.90%)and Sesbania cannabina(Retz.)Pori(193.14%and 396.08%)were higher significantly than that of Panicum virgatum L.(49%and 60%),Sorghum bicolor(L.)Moench(99%and 210%),Amaranthus hypochondriacus L.(75%and 36%)and Aneurotepidimu chinense(75%and 77%)(P<0.05).However,Sorghum bicolor(L.)Moench was evidently higher than Panicum virgatum L.,Amaranthus hypochondriacus L.and Aneurotepidimu chinense(P<0.05)in the soil.The population of ammonia bacteria and aerobic cellulose-decomposing bacteria was significantly correlated with the five enzymes(P<0.05),which could improve the microenvironment in saline-alkali soil to accelerate the element cycling and promote the sustainable development of agriculture through cultivating Medicago sativa,Vicia sativa L.,Sesbania cannabina(Retz.)Pori and Sorghum bicolor(L.)Moench.
基金Supported by the Key Research and Development Program for Industrial Keytechnologies of Shandong Province(2016CYJS05A01-2)the Key Research and Development Program for Public Welfare of Shandong Province(2018GNC111001)the Special Fund for the Construction of Oversea Taishan Scholars
文摘Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.
基金supported by The National Natural Science Foundation of China(31922059)the Key Research Program of Frontier Sciences,CAS(QYZDJ SSW DQC027 and ZDBS LY DQC019)。
文摘In forest ecosystems,landslides are one of the most common natural disturbances,altering the physical,chemical and microbial characteristics of soil and thus further altering ecosystem properties and processes.Although secondary forests comprise more than 50%of global forests,the influence of landslides on the soil properties in these forests is underappreciated.Therefore,this study investigates the influence of landslides on the chemical and microbial nature of the soil.Study of these modifications is critical,as it provides baseline evidence for subsequent forest revegetation.We selected four independent landslides and adjacent secondary forest stands as references in a temperate secondary forest in northeastern China.Soils were obtained from each stand at 0–10 cm and 10–20 cm depths to determine chemical and microbial properties.Soil total carbon(TC),total nitrogen(TN),nitrate(NO_(3)^(-)-N),available phosphorus(P),microbial biomass carbon(MBC),microbial biomass nitrogen(MBN),microbial biomass phosphorus(MBP)and phenol oxidase,exoglucanase,β-glucosidase,N-acetyl-β-glucosaminidase,L-asparaginase and acid phosphatase activities were 29.3–70.1%lower at the 0–10 cm soil depth in the landslide sites than at the secondary forest sites,whereas total phosphorus(TP)and ammonium(NH_(4)^(+)-N)were unaffected by the landslides.N-related enzymes,N-acetyl-β-glucosaminidase and L-asparaginase were reduced by more than 65%in the landslide sites,consistent with the decrease in nitrate concentration at the same 0–10 cm depth.At a depth of 10–20 cm,the variations in the soil properties were consistent with those at the 0–10 cm depth.The results demonstrated that soil chemical and microbial properties were significantly disrupted after the landslides,even though the landslides had occurred 6 years earlier.A long time is thus needed to restore the original C and nutrient levels.In temperate secondary forests,soil TC and TN contents were found to be more suitable for estimating the state of soil restoration than soil TP content.
基金Projects(41302219,41302076)supported by the National Natural Science Foundation of China
文摘An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to describe only the envelope of the maximum plastic deformations generated during the cyclic loading process, which can calculate the accumulated deformation by means of relatively large load cycle increments. The concept of volumetric hardening was incorporated into the model and a so-called overstress formulation was employed to describe the evolution of the accumulated volumetric deformation as a state parameter. The model accounted for ratcheting shakedown and accumulation such as a pseudo-yield surface(a shakedown surface) associated with loading inside the current virgin yield surface which was implemented into the well-known modified Cam-clay model. Finally, the model was calibrated using data from the stress-controlled drained cyclic triaxial tests on homogeneous fine grained sands. It is seen that the model can successfully represent important features of the ratcheting accumulation of both volumetric and deviatoric deformation caused by repeated drained loading over a large number of cycles.