Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin...Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.展开更多
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of S...Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.展开更多
文摘Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.
基金supported by the National Key R&D Program of China (No. 2023YFA1606401 and 2018YFA0404401)the Young Scholar of Regional Development,CAS ([2023] 15)+1 种基金Chinese Academy of Sciences Stable Support for Young Teams in Basic Research (No. YSBR-002)Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (No. XDB34000000)
文摘Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.