The steviol glycosides(SGs)in stevia(Stevia rebaudiana Bertoni)leaves are becoming increasingly valuable due to its high sweetness but low calorific value,which is driving the development of stevia commercial cultivat...The steviol glycosides(SGs)in stevia(Stevia rebaudiana Bertoni)leaves are becoming increasingly valuable due to its high sweetness but low calorific value,which is driving the development of stevia commercial cultivation.Optimizing fertilization management can effectively increase SGs productivity,but knowledge on the relationship between potassium(K)fertilization and SGs production is still lacking.In this study,pot experiments were conducted in order to investigate the effect of K deficiency on SGs synthesis in stevia leaves,as well as the underlying mechanisms.Our results showed that when compared with standard K fertilization,K deficiency treatment has no significant effect on the biomass of stevia plant grown in a given soil with high K contents.However,K deficiency critically decreased leaf SGs contents as well as the expression of SGs synthesis-related genes.The contents of different sugar components decreased and the activities of sugar metabolism-related enzymes were inhibited under the K deficiency condition.Moreover,spraying sucrose on the leaves of stevia seedlings diminished the inhibitory effect caused by K deficiency.Our results also revealed the significant positive correlations between sucrose,glucose and SGs contents.Overall,our results suggest that K deficiency would suppress the synthesis of SGs in stevia leaves,and this effect may be mediated by the leaf sugar metabolism.Our findings provide new insights into the improvement of SGs production potential.展开更多
Steviol glycosides are natural sweetener constituents found in the leaves of Stevia rebaudiana Bertoni (Asteraceae). The specifications for steviol glycosides were established by the Joint FAO/WHO Expert Committee on ...Steviol glycosides are natural sweetener constituents found in the leaves of Stevia rebaudiana Bertoni (Asteraceae). The specifications for steviol glycosides were established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2008, although there was a call in the following year for the modification of this assay method to enable the determination of nine steviol glycosides rather than just seven. In response, based on a proposed method by the Japan Stevia Association, we developed an improved method by changing the HPLC conditions and including the use of an octadecylsilyl column instead of an amino-bonded column to enable the rapid and reliable determination of the nine steviol glycosides by an isocratic HPLC-UV method. With the developed method, the nine steviol glycosides can be separately determined, and identified using individual reference chemicals as standards, unlike the previous identification method, which was based on the relative retention times. In addition, the single stevioside quantification standard was replaced with both stevioside and rebaudioside A quantification standards. Importantly, the validation of the developed method was successful. The limits of quantification for the nine steviol glycosides were between 0.2% and 0.6%. The developed assay method for the nine steviol glycosides was proposed to JECFA and adopted as the revised assay method for the steviol glycosides specifications at its 73rd meeting in 2010.展开更多
Stevia rebaudiana Bertoni is commonly called stevia and mostly found in the north east regions of South America.It is an herbaceous and shrubby plant belonging to the Asteraceae family.Stevia is considered as a natura...Stevia rebaudiana Bertoni is commonly called stevia and mostly found in the north east regions of South America.It is an herbaceous and shrubby plant belonging to the Asteraceae family.Stevia is considered as a natural sweetener and a commercially important plant worldwide.The leaves of S.rebaudiana contain steviol glycosides(SGs)which are highly potent and non-caloric sweeteners.The sweetening property of S.rebaudiana is contributed to the presence of these high potency,calorie free steviol glycosides.SGs are considerably suitable for replacing sucrose and other artificial sweetening agents which are used in different industries and pharmaceuticals.SGs amount in the plant mostly varies from 8%to 10%,and the enhancement of SGs is always in demand.These glycosides have the potential to become healthier alternatives to other table sugars for having desirable taste and zero calories.SGs are almost 300 times sweeter than sucrose.Being used as alternative sugar intensifier the commercial value of this plant in biopharmaceutical,food and beverages industries and in international market is increasing day by day.SGs have made stevia an important part of the medicinal world as well as the food and beverage industry,but the limited production of plant material is not fulfilling the higher global market demand.Therefore,researchers are working worldwide to increase the production of important SGs through the intercession of different biotechnological approaches in S.rebaudiana.This review aims to describe the emerging biotechnological strategies and approaches to understand,stimulate and enhance biosynthesis of secondary metabolites in stevia.Conventional and biotechnological methods for the production of steviol glycosides have been briefly reviewed and discussed.展开更多
The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of ...The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of an internal standard allows for the correction of losses due to sample clean-up of complex samples. An ideal IS is a compound that has properties very similar to, and that behaves as the compounds to be analysed. Ideally, only in the last step of analysis (HPLC), the IS should be well separated from the compounds of the mixture to be analysed. After testing several existing compounds with negative results, we decided to synthesise the 19-O-β-D-galactopyranosyl-13-O-β-D-glucopyranosyl-steviol as IS. This is the 19-galactosyl ester of steviolmonoside (13-O-β-D-glucopyranosyl-steviol). The IS was made according to published methods. Steviolmonoside (SM) was made from purified commercial rubusoside (Rub) by refluxing it in 10% KOH for 2 h. SM was precipitated and crystallized from MeOH. The hydroxyls of the glucose unit of SM were protected by acetylation. The acetylated SM was crystallized from acetone and dissolved in 1,2-dichloroethane. Then Ag2CO3 on Celite and tetra-acetylated galactopyranosyl bromide were added and the mixture was refluxed for 2 h. After cooling, BaO in MeOH was added to remove the acetyl groups. The 1,2-dichloroethane fraction was then extracted three times with equal volumes of water and the water fraction containing the IS was further purified on a C18 flash chromatography column. Traces of unreacted SM were removed by preparative HPLC on an Alltima C18 column (250 mm × 22 mm, particle size 10 μm) with AcCN:water (35:65, 20 ml/min). Detection was at 210 nm (KNAUER, “Smartline” UV detector 2500). The collected IS fraction from the HPLC was completely dried. Mixtures of steviol glycosides (SVglys) containing IS could be purified over SPE cartridges without change of the SVgly over IS ratio. The calibration curves for rebaudioside A (RebA) and stevioside (ST) were linear between 0.012 and 0.95 and between 0.013 and 1.13 mM for RebA and ST, respectively. The accuracy was checked by the standard addition method. It was concluded that the IS method gives an excellent precision and accuracy.展开更多
Stevia is well-known for its unique non-caloric intense sweetness and recognising as one of the most acceptable sweeteners.Therefore,quality control and metabolite profiling perspectives,two isocratic reverse-phase UP...Stevia is well-known for its unique non-caloric intense sweetness and recognising as one of the most acceptable sweeteners.Therefore,quality control and metabolite profiling perspectives,two isocratic reverse-phase UPLC-PDA-ELSD-MS methods were developed to determine nine diterpene glycosides(method A)and isomeric compounds(steviol and isosteviol;method B).Both the methods were validated and found as per the ICH guidelines for accuracy(recovery),precision(Intraday,interday,and intermediate precision),linearity,and regression coefficient(r2),ruggedness(eluent concentration±2 mM,column oven temperature±3℃ and retention time),and system suitability(theoretical plate count,asymmetric factor,injection precision and resolution).LOD for steviol and its glycosides were found between 0.92 and 5.22μg/mL while LOQ were 2.78-18.29μg/mL,respectively.Validated methods had shown only the presence of steviol glycosides in Stevia rebaudina samples while LC-ESI-MS/MS revealed the identification of 46 different class of molecules.These methods will be helpful to monitor quality in Stevia production and its derived products.展开更多
建立了亲水作用色谱-超高效液相色谱-四极杆/静电场轨道阱质谱非靶向筛查测定白酒和饮料中甜菊糖苷的分析方法,并对甜菊糖苷类天然甜味剂的质谱裂解规律进行了研究。样品经水溶液适当稀释,过滤膜后经Waters Xbridge Am ide色谱柱(150 m ...建立了亲水作用色谱-超高效液相色谱-四极杆/静电场轨道阱质谱非靶向筛查测定白酒和饮料中甜菊糖苷的分析方法,并对甜菊糖苷类天然甜味剂的质谱裂解规律进行了研究。样品经水溶液适当稀释,过滤膜后经Waters Xbridge Am ide色谱柱(150 m m×4. 6 m m,3. 5μm)分离,超高效液相色谱-四极杆/静电场轨道阱质谱检测,电离模式为电喷雾电离源负离子模式,数据采集使用一级母离子全扫描和数据依赖的二级子离子扫描(full MS/ddMS2)模式。基于8种甜菊糖苷标准品的碎片离子谱分析,识别出甜菊糖苷类化合物存在两个共性碎片离子,以这两个离子作为标识离子对样品中未知甜菊糖苷类化合物进行了非靶标筛查。通过方法学验证,8种甜菊糖苷标准品在10~1 000μg/L内线性关系良好,检出限为0. 3~20μg/L。添加量为10~100μg/kg时,平均回收率为81. 9%~106%,相对标准偏差为0. 1%~9. 3%(n=3)。该方法筛查范围广,结果准确,灵敏度高,可用于食品中甜菊糖苷的非靶标筛查测定。展开更多
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20180312)the Jiangsu Key Laboratory for the Research and Utilization of Plant Resources,China(JSPKLB201810)the Natural Science Foundation of Shanxi Province,China(201901D111230)。
文摘The steviol glycosides(SGs)in stevia(Stevia rebaudiana Bertoni)leaves are becoming increasingly valuable due to its high sweetness but low calorific value,which is driving the development of stevia commercial cultivation.Optimizing fertilization management can effectively increase SGs productivity,but knowledge on the relationship between potassium(K)fertilization and SGs production is still lacking.In this study,pot experiments were conducted in order to investigate the effect of K deficiency on SGs synthesis in stevia leaves,as well as the underlying mechanisms.Our results showed that when compared with standard K fertilization,K deficiency treatment has no significant effect on the biomass of stevia plant grown in a given soil with high K contents.However,K deficiency critically decreased leaf SGs contents as well as the expression of SGs synthesis-related genes.The contents of different sugar components decreased and the activities of sugar metabolism-related enzymes were inhibited under the K deficiency condition.Moreover,spraying sucrose on the leaves of stevia seedlings diminished the inhibitory effect caused by K deficiency.Our results also revealed the significant positive correlations between sucrose,glucose and SGs contents.Overall,our results suggest that K deficiency would suppress the synthesis of SGs in stevia leaves,and this effect may be mediated by the leaf sugar metabolism.Our findings provide new insights into the improvement of SGs production potential.
文摘Steviol glycosides are natural sweetener constituents found in the leaves of Stevia rebaudiana Bertoni (Asteraceae). The specifications for steviol glycosides were established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2008, although there was a call in the following year for the modification of this assay method to enable the determination of nine steviol glycosides rather than just seven. In response, based on a proposed method by the Japan Stevia Association, we developed an improved method by changing the HPLC conditions and including the use of an octadecylsilyl column instead of an amino-bonded column to enable the rapid and reliable determination of the nine steviol glycosides by an isocratic HPLC-UV method. With the developed method, the nine steviol glycosides can be separately determined, and identified using individual reference chemicals as standards, unlike the previous identification method, which was based on the relative retention times. In addition, the single stevioside quantification standard was replaced with both stevioside and rebaudioside A quantification standards. Importantly, the validation of the developed method was successful. The limits of quantification for the nine steviol glycosides were between 0.2% and 0.6%. The developed assay method for the nine steviol glycosides was proposed to JECFA and adopted as the revised assay method for the steviol glycosides specifications at its 73rd meeting in 2010.
基金This work was financially supported by the National Natural Science Foundation of China(21676119,31671845,32021005)the Key Research and Development Program of China(2018YFA0900300,2018YFA0900504).
文摘Stevia rebaudiana Bertoni is commonly called stevia and mostly found in the north east regions of South America.It is an herbaceous and shrubby plant belonging to the Asteraceae family.Stevia is considered as a natural sweetener and a commercially important plant worldwide.The leaves of S.rebaudiana contain steviol glycosides(SGs)which are highly potent and non-caloric sweeteners.The sweetening property of S.rebaudiana is contributed to the presence of these high potency,calorie free steviol glycosides.SGs are considerably suitable for replacing sucrose and other artificial sweetening agents which are used in different industries and pharmaceuticals.SGs amount in the plant mostly varies from 8%to 10%,and the enhancement of SGs is always in demand.These glycosides have the potential to become healthier alternatives to other table sugars for having desirable taste and zero calories.SGs are almost 300 times sweeter than sucrose.Being used as alternative sugar intensifier the commercial value of this plant in biopharmaceutical,food and beverages industries and in international market is increasing day by day.SGs have made stevia an important part of the medicinal world as well as the food and beverage industry,but the limited production of plant material is not fulfilling the higher global market demand.Therefore,researchers are working worldwide to increase the production of important SGs through the intercession of different biotechnological approaches in S.rebaudiana.This review aims to describe the emerging biotechnological strategies and approaches to understand,stimulate and enhance biosynthesis of secondary metabolites in stevia.Conventional and biotechnological methods for the production of steviol glycosides have been briefly reviewed and discussed.
文摘The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of an internal standard allows for the correction of losses due to sample clean-up of complex samples. An ideal IS is a compound that has properties very similar to, and that behaves as the compounds to be analysed. Ideally, only in the last step of analysis (HPLC), the IS should be well separated from the compounds of the mixture to be analysed. After testing several existing compounds with negative results, we decided to synthesise the 19-O-β-D-galactopyranosyl-13-O-β-D-glucopyranosyl-steviol as IS. This is the 19-galactosyl ester of steviolmonoside (13-O-β-D-glucopyranosyl-steviol). The IS was made according to published methods. Steviolmonoside (SM) was made from purified commercial rubusoside (Rub) by refluxing it in 10% KOH for 2 h. SM was precipitated and crystallized from MeOH. The hydroxyls of the glucose unit of SM were protected by acetylation. The acetylated SM was crystallized from acetone and dissolved in 1,2-dichloroethane. Then Ag2CO3 on Celite and tetra-acetylated galactopyranosyl bromide were added and the mixture was refluxed for 2 h. After cooling, BaO in MeOH was added to remove the acetyl groups. The 1,2-dichloroethane fraction was then extracted three times with equal volumes of water and the water fraction containing the IS was further purified on a C18 flash chromatography column. Traces of unreacted SM were removed by preparative HPLC on an Alltima C18 column (250 mm × 22 mm, particle size 10 μm) with AcCN:water (35:65, 20 ml/min). Detection was at 210 nm (KNAUER, “Smartline” UV detector 2500). The collected IS fraction from the HPLC was completely dried. Mixtures of steviol glycosides (SVglys) containing IS could be purified over SPE cartridges without change of the SVgly over IS ratio. The calibration curves for rebaudioside A (RebA) and stevioside (ST) were linear between 0.012 and 0.95 and between 0.013 and 1.13 mM for RebA and ST, respectively. The accuracy was checked by the standard addition method. It was concluded that the IS method gives an excellent precision and accuracy.
文摘Stevia is well-known for its unique non-caloric intense sweetness and recognising as one of the most acceptable sweeteners.Therefore,quality control and metabolite profiling perspectives,two isocratic reverse-phase UPLC-PDA-ELSD-MS methods were developed to determine nine diterpene glycosides(method A)and isomeric compounds(steviol and isosteviol;method B).Both the methods were validated and found as per the ICH guidelines for accuracy(recovery),precision(Intraday,interday,and intermediate precision),linearity,and regression coefficient(r2),ruggedness(eluent concentration±2 mM,column oven temperature±3℃ and retention time),and system suitability(theoretical plate count,asymmetric factor,injection precision and resolution).LOD for steviol and its glycosides were found between 0.92 and 5.22μg/mL while LOQ were 2.78-18.29μg/mL,respectively.Validated methods had shown only the presence of steviol glycosides in Stevia rebaudina samples while LC-ESI-MS/MS revealed the identification of 46 different class of molecules.These methods will be helpful to monitor quality in Stevia production and its derived products.