This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based...The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.展开更多
This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characterist...This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characteristic of TFNs, the length of any path p from s to t , which equals the extended sum of all arcs belonging to p , is also TFN. Therefore, the fuzzy shortest path problem (FSPP) becomes to select the smallest among all those TFNs corresponding to different paths from s to t (specifically, the smallest TFN represents the shortest path). Based on Adamo's method for ranking fuzzy number, the pessimistic method and its extensions - optimistic method and λ combination method, are presented, and the FSPP is finally converted into the crisp shortest path problems.展开更多
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ...Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.展开更多
In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Rational planning of agricultural product transport route from initial node to destination node can effectively reduce the cost price of agricultural products,and the calculation of shortest path between any two point...Rational planning of agricultural product transport route from initial node to destination node can effectively reduce the cost price of agricultural products,and the calculation of shortest path between any two points also affects people’s daily travel.Taking Heze Railway Station to Heze College for example,with remote sensing image data as the base map,we conduct vectorization and topological analysis on roads in the target area.With Dijkstra as theoretical basis of shortest path algorithm,we use ArcG IS network analysis method to build road network,and calculate the planning program of the shortest distance path,the shortest path by driving and the shortest path by walking.展开更多
The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based e...The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network.展开更多
This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is base...This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is based on the novel idea of a one-way separator, which has the property that any directed path can be crossed only once.展开更多
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
文摘The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.
文摘This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characteristic of TFNs, the length of any path p from s to t , which equals the extended sum of all arcs belonging to p , is also TFN. Therefore, the fuzzy shortest path problem (FSPP) becomes to select the smallest among all those TFNs corresponding to different paths from s to t (specifically, the smallest TFN represents the shortest path). Based on Adamo's method for ranking fuzzy number, the pessimistic method and its extensions - optimistic method and λ combination method, are presented, and the FSPP is finally converted into the crisp shortest path problems.
文摘Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
基金Supported by Science Foundation of Heze University(XY14SK14)
文摘Rational planning of agricultural product transport route from initial node to destination node can effectively reduce the cost price of agricultural products,and the calculation of shortest path between any two points also affects people’s daily travel.Taking Heze Railway Station to Heze College for example,with remote sensing image data as the base map,we conduct vectorization and topological analysis on roads in the target area.With Dijkstra as theoretical basis of shortest path algorithm,we use ArcG IS network analysis method to build road network,and calculate the planning program of the shortest distance path,the shortest path by driving and the shortest path by walking.
文摘The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network.
文摘This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is based on the novel idea of a one-way separator, which has the property that any directed path can be crossed only once.