期刊文献+
共找到5,792篇文章
< 1 2 250 >
每页显示 20 50 100
基于SOM-PNN分类器的体数据概率分类及绘制 被引量:2
1
作者 马峰 夏绍玮 +1 位作者 童欣 唐泽圣 《计算机学报》 EI CSCD 北大核心 1998年第9期819-824,共6页
概率分类是三维医学体数据绘制必不可少的预处理环节.本文提出的SOM-PNN分类器,以贝叶斯置信度为基础,给出概率分类结果,并用于三维体绘制,得到了良好的图像质量和较高的分类效率.传统的参数模型方法的主要缺点是预先假定的概率... 概率分类是三维医学体数据绘制必不可少的预处理环节.本文提出的SOM-PNN分类器,以贝叶斯置信度为基础,给出概率分类结果,并用于三维体绘制,得到了良好的图像质量和较高的分类效率.传统的参数模型方法的主要缺点是预先假定的概率分布函数形式不一定符合待分类的数据.非参数模型方法,如PNN分类器,可以有效地克服参数模型的缺点,但其巨大的内存开销与低的分类速度使得用PNN作图像分类几乎不可行.SOM具有良好的自组织聚类能力,但无法直接给出概率分类结果.本文提出的SOM-PNN分类器在SOM聚类的基础上,利用PNN进行概率分类,结合了SOM自组织聚类和PNN概率分类的优势,同时克服了传统参数模型分类的局限性.实验结果证实了SOM-PNN分类器具有分类精度高、速度快及揭示细节的能力. 展开更多
关键词 som-pnn分类器 体数据概率分类 体绘制 医学
在线阅读 下载PDF
基于哈希桶的快速三支决策邻域分类器
2
作者 贾润亮 张海玉 《小型微型计算机系统》 北大核心 2025年第4期776-782,共7页
三支决策邻域分类器作为邻域粗糙集的重要扩展,目前已成为数据挖掘中一种有效的分类方法.然而,三支决策邻域分类器当前仍存在两方面的局限,一是获得测试样本邻域类的计算复杂度较高,二是测试样本对于多个最大决策类场景无法确定最终的... 三支决策邻域分类器作为邻域粗糙集的重要扩展,目前已成为数据挖掘中一种有效的分类方法.然而,三支决策邻域分类器当前仍存在两方面的局限,一是获得测试样本邻域类的计算复杂度较高,二是测试样本对于多个最大决策类场景无法确定最终的类别标签,为了解决此问题,本文提出一种基于哈希桶方法的快速三支决策邻域分类器.首先,对分类训练集通过哈希规则将样本对象映射到对应的哈希桶中,通过哈希桶实现了邻域的搜索范围被限制在对象所属桶和相邻两个桶中;然后,为了避免测试样本针对多个最大决策类存在类别无法判定的情况,定义一种平均距离度来描述对象与决策类之间的距离程度,在多数投票规则基础上结合平均距离度,实现了测试对象对最大决策类的识别能力;最后,综合快速邻域类计算和平均距离度,建立了基于哈希桶的快速三支决策邻域分类器模型.实验结果表明了所提出的分类器具有较好的分类性能和分类效率. 展开更多
关键词 邻域粗糙集 邻域分类器 哈希桶 三支决策 平均距离度
在线阅读 下载PDF
基于拓扑感知和双视图分类器的旋转机械故障诊断方法
3
作者 陈子旭 余文念 +1 位作者 杜伟涛 林正宇 《振动与冲击》 北大核心 2025年第1期151-162,共12页
针对旋转机械不同工况下数据分布不同,以及故障数据稀缺使得样本类别不均衡,导致故障诊断模型性能退化这一问题,提出一种基于拓扑感知和双视图分类器的故障诊断方法。该方法以一个图卷积网络为诊断框架,提出的非参数化拓扑感知模块能自... 针对旋转机械不同工况下数据分布不同,以及故障数据稀缺使得样本类别不均衡,导致故障诊断模型性能退化这一问题,提出一种基于拓扑感知和双视图分类器的故障诊断方法。该方法以一个图卷积网络为诊断框架,提出的非参数化拓扑感知模块能自适应更新图数据拓扑结构,约束不同域数据获取近似的消息传递路径,通过图卷积网络有效提取域一致故障特征;利用二分类器和多分类器构建双视图分类器,并计算二元输出和多元输出的相似度对训练数据进行重加权,避免了类别不均衡下模型的有偏训练以及对少数类样本识别能力不强的现象。利用公开的西安交通大学齿轮故障数据集、MAFAULDA旋转机械故障数据集及自制的滑动轴承故障模拟数据进行试验。结果表明,提出的方法能有效提升类别不均衡下变工况故障诊断的性能。 展开更多
关键词 拓扑感知 双视图分类器 类别不均衡 变工况 故障诊断
在线阅读 下载PDF
基于EMAPs的高光谱遥感多分类器集成算法
4
作者 虞瑶 沈泉飞 吴越 《测绘与空间地理信息》 2025年第2期170-173,共4页
针对提升高光谱遥感影像的分类表现,提出了基于EMAPs的高光谱遥感多分类器集成算法。该算法首先提取扩展多属性剖面(EMAPs)特征,然后选取极限学习机、协同表示分类器和支持向量机作为基分类器,基于提取的EMAPs特征参与集成分类。选取Pur... 针对提升高光谱遥感影像的分类表现,提出了基于EMAPs的高光谱遥感多分类器集成算法。该算法首先提取扩展多属性剖面(EMAPs)特征,然后选取极限学习机、协同表示分类器和支持向量机作为基分类器,基于提取的EMAPs特征参与集成分类。选取Purdue Campus和Indian Pines两组实验数据分析评价所提出算法的有效性,结果表明,与单分类器相比,基于EMAPs的多分类器集成算法可以取得更优异的分类表现。 展开更多
关键词 EMAPs 极限学习机 协同表示分类器 支持向量机 高光谱影像分类
在线阅读 下载PDF
基于无人机影像和分类器集成的土地使用类型自动识别研究
5
作者 周丹 《城市勘测》 2025年第1期33-37,共5页
为提升土地使用类型自动识别性能,研究基于无人机影像和分类器集成的土地使用类型自动识别方法,使土地使用类型识别精确度更高。利用SLA-4800型号无人机采集城市土地区域无人机影像,以土地全区域涵盖以及乡镇集合等准则为基础,构建土地... 为提升土地使用类型自动识别性能,研究基于无人机影像和分类器集成的土地使用类型自动识别方法,使土地使用类型识别精确度更高。利用SLA-4800型号无人机采集城市土地区域无人机影像,以土地全区域涵盖以及乡镇集合等准则为基础,构建土地使用类型自动识别标准,对无人机采集的土地无人机影像进行零均值化以及影像增强处理,实现土地无人机影像预处理,通过采用自动编码机与深度空谱特征联合算法,对预处理后的土地无人机影像进行特征提取,构建以SVM分类器、C4.5决策树分类器以及深度学习分类器组成的集成分类器,最终利用投票辨识实现土地使用类型自动识别。实验表明:该方法处理后土地遥感图像更加清晰,可实现土地使用类型自动识别,且具备较高的识别Kappa系数,有效助力城市各行业的土地配置。 展开更多
关键词 无人机影像 分类器集成 土地使用类型 自动识别 零均值化 SVM分类器
在线阅读 下载PDF
基于机器视觉与SVM分类器的啤酒瓶盖质量检测
6
作者 张航 《自动化应用》 2025年第6期9-11,共3页
传统的质量检测方式存在效率低下、速度慢、劳动强度大且检测精度不稳定等问题,难以满足现代啤酒生产对高速、高效、高质量的需求,因此,现提出基于机器视觉与SVM分类器的啤酒瓶盖质量检测。首先,基于机器视觉采集图像,并运用图像处理技... 传统的质量检测方式存在效率低下、速度慢、劳动强度大且检测精度不稳定等问题,难以满足现代啤酒生产对高速、高效、高质量的需求,因此,现提出基于机器视觉与SVM分类器的啤酒瓶盖质量检测。首先,基于机器视觉采集图像,并运用图像处理技术来减少或控制图像中的噪声。其次,根据面积、周长、填充率及圆形度等特征提取啤酒瓶盖表面特征信息。最后,基于SVM分类器识别瓶盖缺陷,实现对瓶盖质量的有效检测。实验结果表明,基于机器视觉与SVM分类器的啤酒瓶盖质量检测方法具有较高的质量检测准确率和较快的检测速度,能够有效地识别出瓶盖上的各种缺陷。 展开更多
关键词 质量检测 啤酒瓶盖 图像处理 SVM分类器 机器视觉
在线阅读 下载PDF
基于成果导向教育的分类器实验教学设计探索 被引量:1
7
作者 昝风彪 陈达 +1 位作者 刘昕 孟轩 《实验室研究与探索》 CAS 北大核心 2024年第1期165-168,共4页
探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习... 探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习效率。通过此互动式、开放性的课堂教学,不仅充分激发了每一个学生的学习能动性,也使得教师通过课堂氛围灵活的分配教学计划以获得更好的教学体验,更好地完成教学成绩。 展开更多
关键词 PYTHON 分类器 成果导向教育 人才培养
在线阅读 下载PDF
基于同伴辅助学习分类器的部分域自适应方法 被引量:1
8
作者 邱春红 邵晓根 《计算机应用与软件》 北大核心 2024年第1期168-176,共9页
为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入... 为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入一种同伴辅助学习方法,减轻特定目标学习分类器的过度拟合问题。在三个数据集上的实验结果证明该方法不仅减轻了负迁移,而且解决了分类器移位问题。 展开更多
关键词 部分域自适应 负转移 分类器 同伴辅助学习
在线阅读 下载PDF
基于ER Rule的多分类器汽车评论情感分类研究 被引量:1
9
作者 周谧 周雅婧 +1 位作者 贺洋 方必和 《运筹与管理》 CSSCI CSCD 北大核心 2024年第5期161-168,共8页
该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同... 该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同分类器进行文本情感极性分析,并考虑各分类器的权重和可靠度。最后,爬取汽车网站上的评论数据对上述方法进行测试,并用公开的中文酒店评论语料数据进行了验证,结果表明该方法能够有效集成不同分类器的优点,与传统机器学习分类算法相比,其结果在Recall,F1值和Accuracy三个指标上得到了提高,与目前流行的深度学习算法和集成学习算法相比,其结果总体占优。 展开更多
关键词 证据推理规则 分类器融合 TFIDF权重 深度学习算法 集成学习算法
在线阅读 下载PDF
基于多层感知分类器的皮革图像缺陷识别研究 被引量:1
10
作者 马静 《中国皮革》 CAS 2024年第8期40-46,共7页
针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一... 针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一个基于改进多层感知分类器的皮革图像缺陷识别模型;最后,提出一套皮革缺陷图像数据集构建方案,通过滑窗裁剪、样本标注、图像增广等获得4类皮革缺陷图像样本,并将该数据集输入至搭建缺陷识别模型中进行缺陷识别。试验结果表明,本模型对孔洞缺陷、划痕缺陷、针眼缺陷和无缺陷4种故障样本的平均精确率、召回率、准确率和F1值分别为96.97%、96.52%、94.99%和96.14,且本模型进行缺陷识别所用时长仅为3.56 s。相较于经典卷积神经网络VGG16、残差网络ResNet10和支持向量机SVM,本模型对皮革图像不同样本的故障识别准确率更高,识别时间更短。由此说明,本模型能够提升皮革图像缺陷识别准确率和效率,模型性能具备优越性和有效性。 展开更多
关键词 多层感知分类器 皮革图像 图像增广 权值与偏置更新 缺陷识别
在线阅读 下载PDF
引入激活扩散的类分布关系近邻分类器
11
作者 董飒 欧阳若川 +4 位作者 徐海啸 刘杰 刘大有 李婷婷 王鑫禄 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期915-922,共8页
针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同... 针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同质性,从而降低分类错误率.对比实验结果表明,该方法扩大了待分类节点的邻域,在网络数据上分类精度较好. 展开更多
关键词 人工智能 网络数据分类 激活扩散 类分布关系近邻分类器 协作推理
在线阅读 下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
12
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器 集成学习
在线阅读 下载PDF
一种基于多分类器和证据理论融合的水质分类方法
13
作者 项新建 颜超龙 +2 位作者 费正顺 郑永平 李可晗 《人民黄河》 CAS 北大核心 2024年第1期109-113,共5页
针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函... 针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函数,基于证据理论对信度函数进行融合,获得多分类器融合模型。从国家地表水水质自动站发布的2022年3月1—22日水质数据中选取3 558条数据为样本集,采用DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型和多分类器融合模型对待测样本进行测试。结果表明:多分类器融合模型对水质类别判定的平均准确率、精确率、召回率和F1值分别为94.2%、93.8%、94.2%和94.0%。相较于DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型,多分类器融合模型准确率分别提高5.6%、9.8%和13.6%,精确率分别提高5.2%、10.0%和10.9%,召回率分别提高5.6%、9.8%和13.6%,F1值分别提高5.4%、10.2%和12.3%,多分类器融合模型在水质分类方面的准确性和适应性更高。 展开更多
关键词 水质分类 分类器 神经网络 证据理论融合
在线阅读 下载PDF
基于极化SAR梯度和复Wishart分类器的舰船检测
14
作者 殷君君 罗嘉豪 +2 位作者 李响 代晓康 杨健 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期396-410,共15页
舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标... 舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标,从而造成漏检。针对这些问题,该文提出一种基于极化SAR梯度和复Wishart分类器的舰船检测方法。首先,将似然比检验(LRT)梯度引入对数比值梯度框架,使其适用于极化SAR数据;基于LRT梯度图进行恒虚警(CFAR)检测,提取舰船的边缘信息,消除伪影的同时抑制强旁瓣对舰船精细轮廓提取的影响。其次,利用复Wishart迭代分类器对舰船强散射部分进行检测,可排除大部分的杂波干扰且保持舰船形态细节。最后,将二者信息融合,从而可以保持舰船形态细节的同时克服旁瓣和伪信号的虚警。该文在3幅来自ALOS-2卫星的极化SAR图像上进行了对比实验,实验表明与其他方法相比,该文所提算法具有更少的虚警和漏检,且能够有效克服旁瓣泄露,保持舰船形态细节。 展开更多
关键词 舰船检测 极化合成孔径雷达 比值梯度 似然比检验 复Wishart分类器
在线阅读 下载PDF
高阶Takagi-Sugeno-Kang模糊知识蒸馏分类器及其在脑电信号分类中的应用
15
作者 蒋云良 印泽宗 +2 位作者 张雄涛 申情 李华 《智能系统学报》 CSCD 北大核心 2024年第6期1419-1427,共9页
在脑电信号(electro encephalo gram,EEG)的分类检测任务中,低阶TSK(Takagi-Sugeno-Kang)模糊分类器的学习速度较快,但性能表现不理想,高阶TSK模糊分类器虽然具有较强的性能优势,但极其复杂的模糊规则后件严重影响模型的运行速度。为此... 在脑电信号(electro encephalo gram,EEG)的分类检测任务中,低阶TSK(Takagi-Sugeno-Kang)模糊分类器的学习速度较快,但性能表现不理想,高阶TSK模糊分类器虽然具有较强的性能优势,但极其复杂的模糊规则后件严重影响模型的运行速度。为此,提出一种基于负欧氏概率和高阶模糊隐藏知识迁移的新型TSK模糊蒸馏分类器(solved TSK-least learning machine-knowledge distillation classifier,STSK-LLM-KD)。首先,利用所提出的基于知识蒸馏的最小学习机(LLM-KD)对教师模型的后件参数进行快速求解并得到相应的负欧氏概率用于生成软标签;然后,通过计算软标签之间的Kullback-Leible散度提取教师模型的高阶模糊隐藏知识并迁移至低阶学生模型中,使模型性能优于高阶TSK模糊分类器的同时保持更快的训练速度。在运动想象脑电数据集和新德里HauzKhas癫痫脑电数据集上的实验结果充分验证了STSK-LLM-KD的优势,STSK-LLM-KD相较于其他模糊分类器表现更加优异,与深度知识蒸馏模型相比,STSK-LLM-KD能够更好地提升学生模型的性能。 展开更多
关键词 TSK模糊分类器 知识蒸馏 高阶模糊隐藏知识 脑电信号 最小学习机 癫痫 运动想象 模糊系统
在线阅读 下载PDF
基于Hamming距离和量子搜索算法的联想分类器设计
16
作者 肖红 刘新彤 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1426-1438,共13页
针对现有联想分类器不能存储重复样本的问题,提出一种基于Hamming距离和量子搜索算法的量子联想分类器设计方法,并给出联想分类器存储和分类的线路图.该方法需提前准备5组量子比特,分别对Hamming距离、输入样本、模式样本、类别和序号... 针对现有联想分类器不能存储重复样本的问题,提出一种基于Hamming距离和量子搜索算法的量子联想分类器设计方法,并给出联想分类器存储和分类的线路图.该方法需提前准备5组量子比特,分别对Hamming距离、输入样本、模式样本、类别和序号进行编码.首先,根据样本总体N,计算联想分类器所需的量子位数,再利用量子旋转门和Hadamard门将初态为|0〉的量子位旋转为恰好包含N个基态的均衡叠加态;其次,根据待存储样本的类别和值,将剩余两组初始状态为|0〉的量子位通过可控操作转换为相应的量子基态;最后,基于量子最小搜索的分类方法,计算输入样本与所有存储样本之间的Ha mming距离,再使用固定相位Grover量子搜索算法搜索这些Hamming距离的最小值,最小值对应存储样本的类别即为输入样本的类别,具体的分类结果可通过测量寄存器中的量子态得到. 展开更多
关键词 量子联想分类器 均衡叠加态 HAMMING距离 量子最小搜索
在线阅读 下载PDF
深度超圆盘分类器及其在旋转机械故障诊断中的应用 被引量:1
17
作者 杨岸端 吴占涛 +1 位作者 袁毅 杨宇 《噪声与振动控制》 CSCD 北大核心 2024年第2期95-101,207,共8页
几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能... 几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。 展开更多
关键词 故障诊断 深度超圆盘分类器 深度学习 旋转机械
在线阅读 下载PDF
基于多判别器辅助分类器生成对抗网络的故障诊断方法研究 被引量:1
18
作者 叶子汉 王中华 +2 位作者 姜潮 吕新 张哲 《工程设计学报》 CSCD 北大核心 2024年第2期137-150,159,共15页
在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分... 在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分类器生成对抗网络的数据增强算法。通过设置3个判别器、1个生成器并添加独立的分类器,构建了新的辅助分类器生成对抗网络模型。针对在该模型训练中存在的不稳定性问题,通过引入Wasserstein距离构造新的损失函数,并采用稳定性更具优势的单边软约束正则化项替换原有的L2梯度惩罚项来解决模型崩溃问题;在此基础上,采用高效通道注意力机制来进一步提高模型的特征提取能力。将所提出的模型应用于扩充机械设备故障数据集,辅助深度学习智能诊断模型的训练。多个故障数据集扩充实验表明,与现有模型相比,新模型所生成数据的质量更高,故障诊断的准确率也得到进一步提高,因此具有较高的应用价值。 展开更多
关键词 多判别器辅助分类器生成对抗网络 高效通道注意力机制 Lipschitz(利普希茨)约束 数据增强 故障诊断
在线阅读 下载PDF
基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌的微血管侵犯 被引量:2
19
作者 钟伟雄 梁芳蓉 +1 位作者 杨蕊梦 甄鑫 《南方医科大学学报》 CAS CSCD 北大核心 2024年第2期260-269,共10页
目的探讨预测肝细胞癌(HCC)患者是否发生微血管侵犯(MVI)而提出了一种基于多期动态增强CT(DCE-CT)影像组学特征和多分类器分层融合的预测模型。方法回顾性收集2016年1月~2020年4月广州市第一人民医院111例经病理证实的HCC患者的术前DCE... 目的探讨预测肝细胞癌(HCC)患者是否发生微血管侵犯(MVI)而提出了一种基于多期动态增强CT(DCE-CT)影像组学特征和多分类器分层融合的预测模型。方法回顾性收集2016年1月~2020年4月广州市第一人民医院111例经病理证实的HCC患者的术前DCE-CT图像。分别在早期动脉期(EAP)、晚期动脉期(LAP)、门静脉期(PVP)和平衡期(EP)进行了感兴趣容积(VOI)的勾画,并从中提取出这4个期相的影像组学特征。利用经过筛选后的特征子集分别训练7种基于不同算法的分类器,得到不同期相下的多个基分类器。然后采用一种新型的基于多准则决策的权重分配算法,按照分层融合的策略依次对同一期相下多个基分类器以及提取了不同期相信息后的模型进行融合,最终得到基于多期DCE-CT影像组学特征和多分类器分层融合预测模型。采用五折交叉验证的方法和ROC曲线下面积(AUC)、准确率(ACC)、灵敏度(SEN)和特异度(SPE)4种评价指标来定量评价所提出的预测模型的性能。提出的模型与使用单一期相或多个不同期相的融合模型、基于单期相单分类器的模型、不同基分类器多样性的模型以及八种基于其他集成方法的分类器模型进行定量比较。结果提出的模型预测HCCMVI的性能在融合4个期相及7种分类器后达到最优,AUC、ACC、SEN和SPE分别为:0.828、0.766、0.877、0.648。对比实验显示,所提出的模型性能优于基于单期相单分类器的模型以及其他集成模型。结论基于多期DCE-CT影像组学特征和多分类器分层融合模型能够很好地预测HCC的MVI情况,相比于其他模型具有较大的性能优势。 展开更多
关键词 肝细胞癌 微血管侵犯 动态增强计算机断层扫描 分类器 多准则决策
在线阅读 下载PDF
改进模糊推理分类器进行木材树种近红外光谱开集分类识别研究 被引量:1
20
作者 李振宇 赵鹏 王承琨 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1868-1876,共9页
开集分类识别是近10多年来模式识别领域研究的热点,它能够识别训练集中已知类别的测试样本,同时还能够有效“拒识”未知类别的测试样本;这些未知类别样本不包含在训练集中。现有的开集分类识别算法主要是基于Support Vector Machine(SVM... 开集分类识别是近10多年来模式识别领域研究的热点,它能够识别训练集中已知类别的测试样本,同时还能够有效“拒识”未知类别的测试样本;这些未知类别样本不包含在训练集中。现有的开集分类识别算法主要是基于Support Vector Machine(SVM)和深度学习网络框架进行改进,并且主要应用在自然景物图像领域中;在光谱分析领域中还鲜有报道。将传统的闭集框架下的模糊推理分类器进行模型改进,提出了开集框架下的改进模糊推理分类器,并将其应用到木材树种近红外光谱分类识别中。首先,使用Flame-NIR近红外微型光谱仪采集木材样本横切面的近红外光谱曲线,采用Metric Learning算法进行光谱向量维度约简降维至4维(4D)。其次,改进闭集框架下的模糊推理分类器,根据模糊规则置信度和各维度隶属度概率的乘积构建Generalized Basic Probability Assignment(GBPA),再根据GBPA进行分类处理。在20个树种的具有不同的Openness指标下的近红外光谱数据集的分类识别对比实验表明,改进的开集模糊推理分类器(fuzzy reasoning classifier in an open set,FRCOS)优于现有的基于机器学习和深度学习的开集分类识别主流算法,具有较好的评价指标F-Score,Kappa系数及总体识别率。 展开更多
关键词 开集分类识别 木材树种识别 模糊推理分类器 近红外光谱分析
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部