期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于电热耦合效应的锂电池荷电状态与温度状态联合估计 被引量:3
1
作者 常小兵 侯宗尚 +2 位作者 刘连起 王光 谢家乐 《储能科学与技术》 CAS CSCD 北大核心 2024年第4期1142-1153,共12页
准确估计电池的荷电状态(SOC)和内部温度可以提高电池的性能和安全性。其中,电池模型的准确性和估计算法的适用性是关键。为了解决这两个问题,本文建立了圆柱形锂离子电池的多参数电热耦合模型。模型考虑电池SOC与温度变化之间的耦合关... 准确估计电池的荷电状态(SOC)和内部温度可以提高电池的性能和安全性。其中,电池模型的准确性和估计算法的适用性是关键。为了解决这两个问题,本文建立了圆柱形锂离子电池的多参数电热耦合模型。模型考虑电池SOC与温度变化之间的耦合关系,并且利用改进的熵热系数实验获得电池运行中产生的可逆热与不可逆热,通过可变遗忘因子最小二乘算法(VFFRLS)进行参数辨识,并对比独立的电模型与热模型的SOC与内部温度估计结果,验证了多参数电热耦合模型的准确性,结果证明所提模型相比较于单独的电热模型,估计精度提高了70%以上。最后,设计了一种基于奇异值分解的卡尔曼滤波(SVD-AUKF)算法来同时在线估计SOC和内部温度,并在改进的动态测试(DST)工况下对所提方法进行实验验证。结果表明:所提方法相较于扩展卡尔曼滤波(EKF)与无迹卡尔曼滤波(UKF)算法,能实现更高精度的SOC和温度估计,SOC与内部温度的平均误差分别是5%和0.2℃。 展开更多
关键词 可逆热 soc和温度联合估计 多参数电热耦合模型 SVD-AUKF算法
在线阅读 下载PDF
基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计 被引量:1
2
作者 刘莹 孙丙香 +1 位作者 赵鑫泽 张珺玮 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期3030-3041,共12页
准确的状态估计对于锂离子电池安全可靠运行具有重要意义,但由于非线性强,多参数耦合,实现宽温域多参数联合在线估计难度较大。考虑到温度影响,建立电热耦合模型,采用扩展卡尔曼滤波算法(EKF)在线辨识电池参数,通过电压及温度仿真验证... 准确的状态估计对于锂离子电池安全可靠运行具有重要意义,但由于非线性强,多参数耦合,实现宽温域多参数联合在线估计难度较大。考虑到温度影响,建立电热耦合模型,采用扩展卡尔曼滤波算法(EKF)在线辨识电池参数,通过电压及温度仿真验证了模型的准确性;然后针对无迹卡尔曼滤波算法(UKF)历史数据利用率低的问题,引入多新息理论(MI)改进UKF,改进后的算法在非电压平台区荷电状态(SOC)估计均方根误差不超过1.2%,相较于改进前误差降低了30%以上,并结合安时积分法设计切换算法,解决了MIUKF算法在磷酸铁锂电池电压平台区无法通过电压反馈修正SOC估计误差的问题,实现了宽温域复杂工况下全区间SOC的准确估计,在不同SOC初始值条件下验证了结合算法的准确性,均方根误差不超过3%,为峰值功率(SOP)估计提供了可靠的SOC值;最后将温度约束引入到SOP估计中,提出多约束条件下的SOP估计方法,结果表明在高温条件下,温度起到关键限制作用,可以防止电池温升过大,减少安全隐患。 展开更多
关键词 磷酸铁锂电池 宽温域 soc/SOP联合估计 电热耦合模型 改进UKF 多约束条件
在线阅读 下载PDF
温度自适应SMO算法估计锂离子电池的SOC
3
作者 吕高 樊郭宇 +2 位作者 张嘉蕾 杜君莉 史书怀 《电池》 CAS 北大核心 2024年第3期334-339,共6页
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式... 现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析。温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低0.3~0.5个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在2%左右,常温25℃工况下误差低于1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考。 展开更多
关键词 荷电状态(soc)估计 滑模观测(SMO) 温度影响 锂离子电池 半实物实验分析
在线阅读 下载PDF
基于改进TOPSIS-模糊贝叶斯网络的电池SOC和SOH联合估计方法
4
作者 雷咸道 李杰 张二信 《分布式能源》 2024年第5期68-75,共8页
为实现储能电池全生命周期下的电池状态动态评估,提高复杂工况下锂离子电池模型的自适应性与状态估计的准确性,提出基于改进逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)-模糊贝叶斯... 为实现储能电池全生命周期下的电池状态动态评估,提高复杂工况下锂离子电池模型的自适应性与状态估计的准确性,提出基于改进逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)-模糊贝叶斯网络的电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)联合估计方法。应用多阶电阻-电容电路(resistor-capacitance circuit,RC)模型、使用节点-支路框架构建电池的等效电路模型,通过基尔霍夫定律与欧姆定律对二阶RC电池等效电路模型中的并联回路进行电气特性分析,构建空间状态方程及等效输出方程;对构建的状态方程进行离散化处理,分别定义并联独立回路离散化零输入响应、零状态响应,分析离散化电池模型状态空间方程;将专家打分法引入TOPSIS算法中进行电池SOC量化估计,结合融入模糊尺度的贝叶斯网络,在相同时间分布尺度下通过电池SOH值计算电池观测样本中对应的SOC值,实现电池SOH与SOC联合估计。实验结果表明:所提方法可有效估计不同离散空间尺度下的电池SOC和SOH结果,估计方法具有良好的准确性与较高的精度。 展开更多
关键词 电池荷电状态(soc) 电池健康状态(SOH) 逼近理想解排序法(TOPSIS) 模糊贝叶斯网络 联合估计
在线阅读 下载PDF
基于AEKPF算法对锂离子电池SOC与SOH的联合估计 被引量:9
5
作者 张新锋 姚蒙蒙 +1 位作者 宋瑞 崔金龙 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第1期24-31,共8页
为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter,AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman fil... 为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter,AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman filter)算法时的噪声误差累积问题,并且AEKF(adaptive extended Kalman filter)算法作为PF(particle filter)算法的建议分布用来实时更新粒子,可以改善单独采用PF算法时的粒子退化问题.为了提高SOC的估计精度,提出考虑电池的劣化特征,联合SOH实现对SOC的修正估计.在Matlab环境下的仿真结果表明:AEKPF算法与AEKF算法相比,可以得到更加准确的SOC和SOH估计值,而且AEKPF算法联合SOH可以有效提高SOC的估计精度,仿真绝对误差不超过±1%. 展开更多
关键词 锂离子电池 soc估计 SOH估计 自适应扩展卡尔曼粒子滤波算法 联合估计
在线阅读 下载PDF
锂离子电池SOC及容量的多尺度联合估计 被引量:10
6
作者 杨世春 华旸 +2 位作者 顾启蒙 闫啸宇 李琳 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第8期1444-1452,共9页
锂离子电池的荷电状态(SOC)和电池容量估计是电池管理系统的核心。由于SOC和容量在估计过程中参数相互影响,提出一种适用于三元锂离子电池SOC及容量的多尺度联合估计方法。采用戴维宁等效电路模型,建立数学模型及状态空间方程。针对不... 锂离子电池的荷电状态(SOC)和电池容量估计是电池管理系统的核心。由于SOC和容量在估计过程中参数相互影响,提出一种适用于三元锂离子电池SOC及容量的多尺度联合估计方法。采用戴维宁等效电路模型,建立数学模型及状态空间方程。针对不同温度下电池特性不同的问题,在不同温度下开展了模型参数辨识,建立了参数随SOC及温度的变化关系。基于双扩展卡尔曼滤波(DEKF)算法建立了电池状态多尺度联合估计模型,对电池的SOC、极化电压在微观时间尺度上进行估计,对电池的容量在宏观时间尺度上进行估计,并对SOC估计中的容量进行更新,保证了电池长期估计的精度。在宽温度范围内进行验证,所建立的三元锂离子电池多尺度联合估计方法具有较高的精度。 展开更多
关键词 锂离子电池 荷电状态(soc) 容量 联合估计 多时间尺度
在线阅读 下载PDF
基于D-UKF的锂离子电池SOC/SOH联合估计方法和容量衰减机理研究 被引量:3
7
作者 汪秋婷 戚伟 《科技通报》 2018年第1期145-150,共6页
以磷酸铁锂的高容量锂离子电池为研究对象,从自主设计的电化学-电路等效模型的建立与优化入手,分析电池模型参数的特征;在无迹Kalman滤波(UKF)算法应用研究的基础上,进行基于双UKF(D-UKF)的新型SOC/SOH联合估计方法研究,即利用电池单体... 以磷酸铁锂的高容量锂离子电池为研究对象,从自主设计的电化学-电路等效模型的建立与优化入手,分析电池模型参数的特征;在无迹Kalman滤波(UKF)算法应用研究的基础上,进行基于双UKF(D-UKF)的新型SOC/SOH联合估计方法研究,即利用电池单体荷电状态(SOC)评估电池健康状况(SOH)。实验结果显示,新方法具有较高的估计精度和较快的估计速度,对于提高电池组的能量储存能力、利用率和循环寿命有着重要的应用价值。 展开更多
关键词 联合估计 D-UKF soc/SOH 容量衰减 锂离子电池
在线阅读 下载PDF
基于多方法融合的锂离子电池SOC-SOH联合估计 被引量:7
8
作者 王志福 罗崴 +1 位作者 闫愿 李仁杰 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第6期575-584,共10页
健康状态估计对电池的实用性和经济性具有指导意义.针对电池健康状态估计难度大且估计结果极易受噪声的影响,但融合算法估计效果好且受噪声影响小,提出了基于粒子群优化深度置信网络和自适应扩展卡尔曼/自适应H_(∞)滤波((PSO-DBN)-AEKF... 健康状态估计对电池的实用性和经济性具有指导意义.针对电池健康状态估计难度大且估计结果极易受噪声的影响,但融合算法估计效果好且受噪声影响小,提出了基于粒子群优化深度置信网络和自适应扩展卡尔曼/自适应H_(∞)滤波((PSO-DBN)-AEKF/AHIFF)融合算法在卷积神经网络(CNN)模型下的锂离子电池SOC-SOH联合估计.首先对于健康状态(SOH)数据的预处理环节采用小波变换的方法使得噪声显著去除.其次将去噪后的数据代入训练好的CNN模型进行SOH估计,并融合((PSO-DBN)-AEKF/AHIFF)算法进行健康状态估计,最后在DST工况和UDDS工况下,搭建Matlab/Simulink/Python环境下的Typhoon HIL602+硬件在环平台进行联合估计的验证,结果显示健康状态的估计误差在1%以内,荷电状态(SOC)的估计误差在2%以内,由此证明了多方法融合的SOC-SOH联合估计的有效性,且具有较好的估计精度和鲁棒性. 展开更多
关键词 锂离子电池 健康状态(SOH) 多算法融合 荷电状态(soc) 联合估计
在线阅读 下载PDF
不同温度下基于FFRLS-AEKF的锂电池SOC估计
9
作者 谭天雄 朱骏 +1 位作者 吴立锋 袁慧梅 《计算机应用与软件》 北大核心 2022年第5期68-77,共10页
荷电状态(SOC)是电池管理系统的重要指标。针对不同环境温度对于SOC估计的影响,分别建立基于温度影响的二阶RC等效电路模型与电池可用容量模型。在此基础上,采用带有遗忘因子的递归最小二乘法(FFRLS)对模型参数进行在线识别,同时结合改... 荷电状态(SOC)是电池管理系统的重要指标。针对不同环境温度对于SOC估计的影响,分别建立基于温度影响的二阶RC等效电路模型与电池可用容量模型。在此基础上,采用带有遗忘因子的递归最小二乘法(FFRLS)对模型参数进行在线识别,同时结合改进的自适应扩展卡尔曼滤波算法(AEKF)实现SOC在线联合估计,以其闭环反馈系统通过迭代来保障估计的准确性。实验结果表明,该方法在不同的环境温度下都具有较高的精度,且最大误差小于1.2%,平均绝对误差小于0.6%,均方根误差小于0.5%。 展开更多
关键词 锂离子电池 荷电状态 温度影响 在线联合估计 自适应扩展卡尔曼算法
在线阅读 下载PDF
基于ABP-EKF算法的锂电池SOC估计 被引量:11
10
作者 李军 张俊 张世义 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第3期135-140,共6页
电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积... 电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识。分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF)。运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%。 展开更多
关键词 车辆工程 锂电池soc 扩展卡尔曼滤波算法 自适应BP神经网络算法 联合估计
在线阅读 下载PDF
基于在线参数辨识和ASR-UKF的锂离子电容SOC估计 被引量:2
11
作者 吕甜 张雪霞 《电源技术》 CAS 北大核心 2021年第1期27-30,55,共5页
以一种新型混合型超级电容器——锂离子电容为研究对象,针对其在混合动力机车应用中的SOC估计问题,建立锂离子电容的二阶等效电路模型,采用带遗忘因子的递推最小二乘法(FFRLS)和自适应平方根无迹卡尔曼滤波算法(ASR-UKF)交叉联合的方法... 以一种新型混合型超级电容器——锂离子电容为研究对象,针对其在混合动力机车应用中的SOC估计问题,建立锂离子电容的二阶等效电路模型,采用带遗忘因子的递推最小二乘法(FFRLS)和自适应平方根无迹卡尔曼滤波算法(ASR-UKF)交叉联合的方法对锂离子超级电容的荷电状态(SOC)进行估算。FFRLS可以对动态变化的模型参数进行实时且精确的在线辨识,在获得精确的模型参数的基础上,运用ASR-UKF算法对SOC估计不断修正更新,消除系统的未知噪声所引起的误差,并且利用协方差平方根来代替协方差矩阵进行迭代运算,克服滤波发散的问题,进而获得最优的SOC估算值。通过在实验室环境下的混合脉冲功率特性(HPPC)工况和模拟工况的实验仿真,评估了该联合算法的有效性。 展开更多
关键词 锂离子电容 在线参数辨识 联合算法 soc估计
在线阅读 下载PDF
基于免疫遗传算法的动力电池SOC估计研究 被引量:7
12
作者 杨云龙 徐自强 +1 位作者 吴孟强 张大庆 《计算机测量与控制》 2018年第12期220-224,共5页
锂离子动力电池SOC (电池荷电状态)难以直接测量且由于高度非线性所导致估计误差较大;为了减少动力电池SOC估计误差,提高估算精度;在分析了锂离子动力电池电压、温度、电流和放电电量对电池SOC影响后,提出一种新颖的免疫遗传算法(Immune... 锂离子动力电池SOC (电池荷电状态)难以直接测量且由于高度非线性所导致估计误差较大;为了减少动力电池SOC估计误差,提高估算精度;在分析了锂离子动力电池电压、温度、电流和放电电量对电池SOC影响后,提出一种新颖的免疫遗传算法(Immune Genetic Algorithm,IGA)和BP神经网络相结合的锂离子动力电池SOC值联合估计方法,该方法首次使用在锂离子动力电池SOC值估计中,采用新颖的免疫遗传算法通过对BP神经网络进行参数寻优,优化网络结构模型,增强神经网络自适应学习效率;通过仿真和动力电池实际工况下实验,结果表明使用新颖的联合估计算法提高了网络的运行效率和电池SOC值估计精度,估计均方根误差控制在2%以内,验证了这一联合估计算法的可行性和有效性,解决了动力电池SOC值估计误差较大的问题。 展开更多
关键词 锂离子动力电池 soc估计 免疫遗传算法IGA 联合估计
在线阅读 下载PDF
基于二阶RC网络模型的UKPF-VFFRLS电池SOC预测估计
13
作者 许耀辉 张丽霞 +1 位作者 刘大勇 常凤筠 《电源技术》 CAS 北大核心 2023年第5期644-649,共6页
针对单一滤波算法对动力电池荷电状态(SOC)预测估计精度有限的问题,分析并建立了二阶RC网络等效电路模型,进行了离线参数辨识,并验证了辨识结果的准确性。以该模型为基础,运用无迹卡尔曼粒子滤波(UKPF)算法对动力电池SOC的动态模型状态... 针对单一滤波算法对动力电池荷电状态(SOC)预测估计精度有限的问题,分析并建立了二阶RC网络等效电路模型,进行了离线参数辨识,并验证了辨识结果的准确性。以该模型为基础,运用无迹卡尔曼粒子滤波(UKPF)算法对动力电池SOC的动态模型状态进行预测估计,以带可变遗忘因子的递推最小二乘法(VFFRLS)对动态模型参数进行辨识,两者互为输入输出,实现UKPF-VFFRLS算法的联合估计。仿真实验结果表明:相比原有单一滤波算法,UKPF-VFFRLS联合估计算法使得SOC平均误差降低至0.74%,均方根误差(RMSE)低至0.009 9,提高了SOC的预测估计结果精度,从而提升了能源消耗预判能力和电池使用效率。 展开更多
关键词 二阶RC网络 UKPF VFFRLS soc联合估计
在线阅读 下载PDF
基于Bi-LSTM的电动直臂车磷酸铁锂电池SOC估计 被引量:2
14
作者 张艺迪 孙晖 《能源工程》 2023年第1期37-42,共6页
针对电动直臂车的特殊工况,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)的电动直臂车荷电状态(SOC)估计模型和方法。该方法将电池的工作电压、电流及表面温度作为输入,采用双向传递的两层LSTM神经网络进行训练,再将两次得到的结果... 针对电动直臂车的特殊工况,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)的电动直臂车荷电状态(SOC)估计模型和方法。该方法将电池的工作电压、电流及表面温度作为输入,采用双向传递的两层LSTM神经网络进行训练,再将两次得到的结果进行拼接作为最终输出。实验结果表明,该方法比传统前馈(BP)神经网络和单向LSTM神经网络具有更好的估计性能,并且可以精确估计不同环境温度下的电池及整车SOC。 展开更多
关键词 soc估计 磷酸铁锂电池 Bi-LSTM神经网络 电动直臂车 环境温度
在线阅读 下载PDF
基于DFFRLS和神经网络-ASRUKF算法的蓄电池SOC估计 被引量:2
15
作者 顾钟凡 陈玉伟 +2 位作者 李承澳 张德春 黄海 《电气传动》 2022年第17期59-65,80,共8页
以3.5 V/20 A·h的磷酸铁锂电池为研究对象,针对其荷电状态(SOC)在线估计问题,建立二阶戴维南(Thevenin)等效RC电路模型,结合BP神经网络、动态遗忘因子最小递推二乘(DFFRLS)法和自适应平方根无迹卡尔曼滤波(ASRUKF)算法提出一种SOC... 以3.5 V/20 A·h的磷酸铁锂电池为研究对象,针对其荷电状态(SOC)在线估计问题,建立二阶戴维南(Thevenin)等效RC电路模型,结合BP神经网络、动态遗忘因子最小递推二乘(DFFRLS)法和自适应平方根无迹卡尔曼滤波(ASRUKF)算法提出一种SOC联合估计算法。采用BP神经网络代替多项式拟合开路电压-荷电状态(OCV-SOC)曲线,提高曲线拟合精度;通过DFFRLS在线辨识模型参数;结合ASRUKF算法进行SOC联合估计。研究表明提出的联合估计算法有效消除了因噪声协方差初值人为设定的误差并克服滤波发散导致状态协方差矩阵非半正定问题,达到获取最优SOC估计值的目的。在循环动态压力测试(DST)实验工况下,将联合估计算法与其他传统算法进行比较,结果表明提出的SOC联合估计算法具有更好的快速性、收敛性和精确性。 展开更多
关键词 蓄电池 BP神经网络 动态遗忘因子RLS算法 自适应平方根UKF算法 soc联合估计
在线阅读 下载PDF
基于趋势补偿的防抱死系统轮速信号处理 被引量:2
16
作者 邹浙湘 王倩 黄宝山 《沈阳工业大学学报》 EI CAS 北大核心 2019年第1期52-56,共5页
为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂... 为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上. 展开更多
关键词 混合动力汽车 汽车防抱死系统 霍尔传感器 温度漂移 轮速信号 联合中值均值加权估计 经验模函数分解 固态模函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部