为实现储能电池全生命周期下的电池状态动态评估,提高复杂工况下锂离子电池模型的自适应性与状态估计的准确性,提出基于改进逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)-模糊贝叶斯...为实现储能电池全生命周期下的电池状态动态评估,提高复杂工况下锂离子电池模型的自适应性与状态估计的准确性,提出基于改进逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)-模糊贝叶斯网络的电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)联合估计方法。应用多阶电阻-电容电路(resistor-capacitance circuit,RC)模型、使用节点-支路框架构建电池的等效电路模型,通过基尔霍夫定律与欧姆定律对二阶RC电池等效电路模型中的并联回路进行电气特性分析,构建空间状态方程及等效输出方程;对构建的状态方程进行离散化处理,分别定义并联独立回路离散化零输入响应、零状态响应,分析离散化电池模型状态空间方程;将专家打分法引入TOPSIS算法中进行电池SOC量化估计,结合融入模糊尺度的贝叶斯网络,在相同时间分布尺度下通过电池SOH值计算电池观测样本中对应的SOC值,实现电池SOH与SOC联合估计。实验结果表明:所提方法可有效估计不同离散空间尺度下的电池SOC和SOH结果,估计方法具有良好的准确性与较高的精度。展开更多
电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积...电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识。分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF)。运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%。展开更多
为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂...为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上.展开更多
文摘为实现储能电池全生命周期下的电池状态动态评估,提高复杂工况下锂离子电池模型的自适应性与状态估计的准确性,提出基于改进逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)-模糊贝叶斯网络的电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)联合估计方法。应用多阶电阻-电容电路(resistor-capacitance circuit,RC)模型、使用节点-支路框架构建电池的等效电路模型,通过基尔霍夫定律与欧姆定律对二阶RC电池等效电路模型中的并联回路进行电气特性分析,构建空间状态方程及等效输出方程;对构建的状态方程进行离散化处理,分别定义并联独立回路离散化零输入响应、零状态响应,分析离散化电池模型状态空间方程;将专家打分法引入TOPSIS算法中进行电池SOC量化估计,结合融入模糊尺度的贝叶斯网络,在相同时间分布尺度下通过电池SOH值计算电池观测样本中对应的SOC值,实现电池SOH与SOC联合估计。实验结果表明:所提方法可有效估计不同离散空间尺度下的电池SOC和SOH结果,估计方法具有良好的准确性与较高的精度。
文摘电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识。分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF)。运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%。
文摘为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上.