The SIQR model is exploited to analyze the outbreak of COVID-19 in Japan where the number of the daily confirmed new cases is explicitly treated as an observable.It is assumed that the society consists of four compart...The SIQR model is exploited to analyze the outbreak of COVID-19 in Japan where the number of the daily confirmed new cases is explicitly treated as an observable.It is assumed that the society consists of four compartments;susceptible individuals(S),infected individuals at large(I),quarantined patients(Q)and recovered individuals(R),and the time evolution of the pandemic is described by a set of ordinary differential equations.It is shown that the quarantine rate can be determined from the time dependence of the daily confirmed new cases,from which the number of infected individuals can be estimated.The infection rate and quarantine rate are determined for the period from mid-February to mid-April in Japan and transmission characteristics of the initial stages of the outbreak in Japan are analyzed in connection with the policies employed by the government.The effectiveness of different measures is discussed for controlling the outbreak and it is shown that identifying patients through PCR(Polymerase Chain Reaction)testing and isolating them in a quarantine is more effective than lockdown measures aimed at inhibiting social interactions of the general population.An effective reproduction number for infected individuals at large is introduced which is appropriate to epidemics controlled by quarantine measures.展开更多
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi...Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.展开更多
文摘The SIQR model is exploited to analyze the outbreak of COVID-19 in Japan where the number of the daily confirmed new cases is explicitly treated as an observable.It is assumed that the society consists of four compartments;susceptible individuals(S),infected individuals at large(I),quarantined patients(Q)and recovered individuals(R),and the time evolution of the pandemic is described by a set of ordinary differential equations.It is shown that the quarantine rate can be determined from the time dependence of the daily confirmed new cases,from which the number of infected individuals can be estimated.The infection rate and quarantine rate are determined for the period from mid-February to mid-April in Japan and transmission characteristics of the initial stages of the outbreak in Japan are analyzed in connection with the policies employed by the government.The effectiveness of different measures is discussed for controlling the outbreak and it is shown that identifying patients through PCR(Polymerase Chain Reaction)testing and isolating them in a quarantine is more effective than lockdown measures aimed at inhibiting social interactions of the general population.An effective reproduction number for infected individuals at large is introduced which is appropriate to epidemics controlled by quarantine measures.
基金The National Natural Science Foundation of China (No.70671021)
文摘Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.