Temperature extremes over rapidly urbanizing regions with high population densities have been scrutinized due to their severe impacts on human safety and economics.First of all,the performance of the regional climate ...Temperature extremes over rapidly urbanizing regions with high population densities have been scrutinized due to their severe impacts on human safety and economics.First of all,the performance of the regional climate model RegCM4 with a hydrostatic or non-hydrostatic dynamic core in simulating seasonal temperature and temperature extremes was evaluated over the historical period of 1991–99 at a 12-km spatial resolution over China and a 3-km resolution over the Beijing−Tianjin−Hebei(JJJ)region,a typical urban agglomeration of China.Simulations of spatial distributions of temperature extremes over the JJJ region using RegCM4 with hydrostatic and non-hydrostatic cores showed high spatial correlations of more than 0.8 with the observations.Under a warming climate,temperature extremes of annual maximum daily temperature(TXx)and summer days(SU)in China and the JJJ region showed obvious increases by the end of the 21st century while there was a general reduction in frost days(FD).The ensemble of RegCM4 with different land surface components was used to examine population exposure to temperature extremes over the JJJ region.Population exposure to temperature extremes was found to decrease in 2091−99 relative to 1991−99 over the majority of the JJJ region due to the joint impacts of increases in temperature extremes over the JJJ and population decreases over the JJJ region,except for downtown areas.Furthermore,changes in population exposure to temperature extremes were mainly dominated by future population changes.Finally,we quantified changes in exposure to temperature extremes with temperature increase over the JJJ region.This study helps to provide relevant policies to respond future climate risks over the JJJ region.展开更多
The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated succe...The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated success in diverse areas of urban research,including urban heat island studies,extreme climate events analysis,assessing urban resilience,and evaluating urbanization impacts on climate and air quality.Recently,more studies have been conducted in utilizing RegCM to address climate change in cities,due to its enhanced ability over the years to capture meteorological phenomena at city scales.However,there are many challenges associated with its implementation in meso-scale research,which are attributed to various shortcomings and thus create room for further improvement in the model.This paper presents a comprehensive overview of the evolution of the RegCM over the years and its customisation across various parameters,demonstrating its versatility in urban climate studies and underscoring the model’s pivotal role in addressing multifaceted challenges in urban environments.By addressing these aspects,the paper offers valuable insights and recommendations for researchers seeking to enhance the accuracy and efficacy of urban climate simulations using the RegCM system,thereby contributing to the advancement of urban climate science and sustainability.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42075162)the National Key Research and Development Program of China(Grant No.2019YFA0606903)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘Temperature extremes over rapidly urbanizing regions with high population densities have been scrutinized due to their severe impacts on human safety and economics.First of all,the performance of the regional climate model RegCM4 with a hydrostatic or non-hydrostatic dynamic core in simulating seasonal temperature and temperature extremes was evaluated over the historical period of 1991–99 at a 12-km spatial resolution over China and a 3-km resolution over the Beijing−Tianjin−Hebei(JJJ)region,a typical urban agglomeration of China.Simulations of spatial distributions of temperature extremes over the JJJ region using RegCM4 with hydrostatic and non-hydrostatic cores showed high spatial correlations of more than 0.8 with the observations.Under a warming climate,temperature extremes of annual maximum daily temperature(TXx)and summer days(SU)in China and the JJJ region showed obvious increases by the end of the 21st century while there was a general reduction in frost days(FD).The ensemble of RegCM4 with different land surface components was used to examine population exposure to temperature extremes over the JJJ region.Population exposure to temperature extremes was found to decrease in 2091−99 relative to 1991−99 over the majority of the JJJ region due to the joint impacts of increases in temperature extremes over the JJJ and population decreases over the JJJ region,except for downtown areas.Furthermore,changes in population exposure to temperature extremes were mainly dominated by future population changes.Finally,we quantified changes in exposure to temperature extremes with temperature increase over the JJJ region.This study helps to provide relevant policies to respond future climate risks over the JJJ region.
文摘The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated success in diverse areas of urban research,including urban heat island studies,extreme climate events analysis,assessing urban resilience,and evaluating urbanization impacts on climate and air quality.Recently,more studies have been conducted in utilizing RegCM to address climate change in cities,due to its enhanced ability over the years to capture meteorological phenomena at city scales.However,there are many challenges associated with its implementation in meso-scale research,which are attributed to various shortcomings and thus create room for further improvement in the model.This paper presents a comprehensive overview of the evolution of the RegCM over the years and its customisation across various parameters,demonstrating its versatility in urban climate studies and underscoring the model’s pivotal role in addressing multifaceted challenges in urban environments.By addressing these aspects,the paper offers valuable insights and recommendations for researchers seeking to enhance the accuracy and efficacy of urban climate simulations using the RegCM system,thereby contributing to the advancement of urban climate science and sustainability.