By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating paramet...By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.展开更多
The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase rea...The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase reaction of TiCl4 with O2. The gas-phase oxidation of TiCl4 was in a high temperature tubular flow reactor with quartz and ceramic rods put in center respectively. Scale layers are formed on reactor wall and two rods. Morphology and phase composition of them were characterized by transmission electron microscope(TEM), scan electron micrographs(SEM) and X-ray diffraction(XRD). The state of reactor wall has a little effect on scaling formation. With uneven temperature distribution along axial of reactor, the higher the reaction temperature is,the thicker the scale layer and the more compact the scale structure is.展开更多
Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear d...Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time.展开更多
Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the sa...Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,展开更多
The UASB reactor was used to reconstruct leachate treatment project of Beijing Asuwei Waste Sanitary Landfill Site,and the commissioning with the UASB reactor was executed.Water quality indicators were determined in t...The UASB reactor was used to reconstruct leachate treatment project of Beijing Asuwei Waste Sanitary Landfill Site,and the commissioning with the UASB reactor was executed.Water quality indicators were determined in the debugging process,and the results showed that the VFA content in the anaerobic tank was controlled within 600 mg/L,which indicated that the water quality did not have the acidified phenomenon.The COD removal efficiency was 50%approximately and NH_3-N concentration showed as light decline when operation stability in anaerobic system.展开更多
The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of he...The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of heat transfer on temperature of the reactor, a new model is set up. For any initial power, the variations of output power and reactivity with time are obtained by numerical method. The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed. It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power, and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper, and the analytical solution can be adopted. The results provide a theoretical base for safety analysis and operation management of a power reactor.展开更多
In this study, we present a model whereby the centre of the atomization channel is shown to be the optimal location for the spectrometric data acquisition in a quartz cell atomizer. The study aims to explore the hydri...In this study, we present a model whereby the centre of the atomization channel is shown to be the optimal location for the spectrometric data acquisition in a quartz cell atomizer. The study aims to explore the hydride generation technique which is normally coupled with efficient thermal source to apply determination of heavy metals in water samples via spectrometric analysis. The arsenic hydride generation process and the atomization of the generated hydride in a quartz cell atomizer were studied analytically as model case studies. The hydride generation (HG) process was analyzed by adopting two hypotheses, the nascent hydrogen and formation of intermediate hydroboron species, where the results based on the second hypothesis are found to be more realistic for design purposes. Moreover, the release of the generated hydride from the liquid phase and their transport to the gas phase is simulated in a helical tubular section, in which the actual tubular section length required for separation is deduced. The analytical results have been verified experimentally by measuring the signal intensity for the free arsenic atoms against several reaction tube lengths, in which increasing the tubular section length from 12 cm to 100 cm results in signal amelioration by no more than 6.6%. Furthermore, the atomization of the hydride and the distribution of the generated free atoms are deduced in two configurations of tubular quartz atomizers. The results obtained from both studied cases illustrate that a high concentration of the free analyte atoms is generated in the first part of the atomization channel, saturates to a maximum in a position at the atomizer centre, and dissipates at the inside wall of the tubular atomizer before reaching the atomizer outlet edge, which is found to be in total agreement with the current understanding of atomization mechanism in tubular atomizer and emphasizes the fact that the centre of the quartz cell atomizer is the best location for the spectrometric data acquisition.展开更多
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
This paper presents the results of polymeric deposit analysis in HP recycling system on two ethylene polymerization trains in tubular reactors when using mixed initiation (organic peroxides and oxygen) in the process ...This paper presents the results of polymeric deposit analysis in HP recycling system on two ethylene polymerization trains in tubular reactors when using mixed initiation (organic peroxides and oxygen) in the process of various grade production. It is demonstrated that polymers belong to the very low density type (with ρ in 0,860 to 0,900 g/cm3 range), due to ultra high branching. Consideration is given to known processes of that kind polymer production. There discussed the alternatives of different approaches to special process features found. It is stated that 80-year high pressure PE synthesis history has been keeping potential for the development.展开更多
The UO2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). A process for preparation of UO2 kernels known as total gelation process of uranium (TGU...The UO2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). A process for preparation of UO2 kernels known as total gelation process of uranium (TGU) was developed as the production process of 10 mW HTR at Tsinghua University. The TGU process is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), which implies that the gelation action is initiated both by ammonia out of the gel particles and hemxamethyl tetra-amine (HMTA) inside the gel particles. The gelation behavior and the properties of uranium microspheres were investigated of the solution with and without HMTA. It is observed that good spherical particles can be obtained without HMTA in the sol, which indicates a more controllable and industrialized route will be set up. Contrasts between this route and the traditional EGU were also listed.展开更多
基金Funded by Sustainable Water Management Improves Tomorrow’s City’s Health (SWITCH018530)
文摘By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.
文摘The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase reaction of TiCl4 with O2. The gas-phase oxidation of TiCl4 was in a high temperature tubular flow reactor with quartz and ceramic rods put in center respectively. Scale layers are formed on reactor wall and two rods. Morphology and phase composition of them were characterized by transmission electron microscope(TEM), scan electron micrographs(SEM) and X-ray diffraction(XRD). The state of reactor wall has a little effect on scaling formation. With uneven temperature distribution along axial of reactor, the higher the reaction temperature is,the thicker the scale layer and the more compact the scale structure is.
基金support of National Key Research and Development Program of China(2020YFA0908303)National Natural Science Foundation of China(21878081).
文摘Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2002AA601310).
文摘Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,
文摘The UASB reactor was used to reconstruct leachate treatment project of Beijing Asuwei Waste Sanitary Landfill Site,and the commissioning with the UASB reactor was executed.Water quality indicators were determined in the debugging process,and the results showed that the VFA content in the anaerobic tank was controlled within 600 mg/L,which indicated that the water quality did not have the acidified phenomenon.The COD removal efficiency was 50%approximately and NH_3-N concentration showed as light decline when operation stability in anaerobic system.
基金Supported by the National Natural Science Foundation of China (No.10575131)
文摘The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of heat transfer on temperature of the reactor, a new model is set up. For any initial power, the variations of output power and reactivity with time are obtained by numerical method. The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed. It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power, and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper, and the analytical solution can be adopted. The results provide a theoretical base for safety analysis and operation management of a power reactor.
文摘In this study, we present a model whereby the centre of the atomization channel is shown to be the optimal location for the spectrometric data acquisition in a quartz cell atomizer. The study aims to explore the hydride generation technique which is normally coupled with efficient thermal source to apply determination of heavy metals in water samples via spectrometric analysis. The arsenic hydride generation process and the atomization of the generated hydride in a quartz cell atomizer were studied analytically as model case studies. The hydride generation (HG) process was analyzed by adopting two hypotheses, the nascent hydrogen and formation of intermediate hydroboron species, where the results based on the second hypothesis are found to be more realistic for design purposes. Moreover, the release of the generated hydride from the liquid phase and their transport to the gas phase is simulated in a helical tubular section, in which the actual tubular section length required for separation is deduced. The analytical results have been verified experimentally by measuring the signal intensity for the free arsenic atoms against several reaction tube lengths, in which increasing the tubular section length from 12 cm to 100 cm results in signal amelioration by no more than 6.6%. Furthermore, the atomization of the hydride and the distribution of the generated free atoms are deduced in two configurations of tubular quartz atomizers. The results obtained from both studied cases illustrate that a high concentration of the free analyte atoms is generated in the first part of the atomization channel, saturates to a maximum in a position at the atomizer centre, and dissipates at the inside wall of the tubular atomizer before reaching the atomizer outlet edge, which is found to be in total agreement with the current understanding of atomization mechanism in tubular atomizer and emphasizes the fact that the centre of the quartz cell atomizer is the best location for the spectrometric data acquisition.
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
文摘This paper presents the results of polymeric deposit analysis in HP recycling system on two ethylene polymerization trains in tubular reactors when using mixed initiation (organic peroxides and oxygen) in the process of various grade production. It is demonstrated that polymers belong to the very low density type (with ρ in 0,860 to 0,900 g/cm3 range), due to ultra high branching. Consideration is given to known processes of that kind polymer production. There discussed the alternatives of different approaches to special process features found. It is stated that 80-year high pressure PE synthesis history has been keeping potential for the development.
文摘The UO2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). A process for preparation of UO2 kernels known as total gelation process of uranium (TGU) was developed as the production process of 10 mW HTR at Tsinghua University. The TGU process is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), which implies that the gelation action is initiated both by ammonia out of the gel particles and hemxamethyl tetra-amine (HMTA) inside the gel particles. The gelation behavior and the properties of uranium microspheres were investigated of the solution with and without HMTA. It is observed that good spherical particles can be obtained without HMTA in the sol, which indicates a more controllable and industrialized route will be set up. Contrasts between this route and the traditional EGU were also listed.